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Dielectric matrix and plasmon dispersion in strongly coupled electronic bilayer liquids
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We develop a dielectric matrix and analyze plasmon dispersion in strongly coupled charged-particle bilayers
in the T=0 quantum domain. The formulation is based on the classical quasilocalized charge approximation
(QLCA) and extends the QLCA formalism into the quantum domain. Its development, which parallels that of
the two-dimensional companion pafé&hys. Rev. E70, 026406(2004] by three of the authors, generalizes
the single-layer scalar formalism therein to a bilayer matrix formalism. Using pair correlation function data
generated from diffusion Monte Carlo simulations, we calculate the dispersion of the in-phase and out-of-phase
plasmon modes over a wide range of highralues and layer separations. The out-of-phase spectrum exhibits
an exchange-correlation induced long-wavelength energy gap in contrast to earlier predictions of acoustic
dispersion softened by exchange and correlations. The energy gap is similar to what has been previously
predicted for classical charged-particle bilayers and subsequently confirmed by recent molecular dynamics
computer simulations.
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[. INTRODUCTION measurements of the spin susceptibility of a 2D electron sys-
tem over a wide range of, values[5], (ii)) measurements of
Over the past two decades, interest in strongly coupleghe compressibility of a 2D hole liquid as it crosses the
multilayer plasmas has been stimulated by a confluence ghetal-insulator transition boundaf$], and (iii) recent in-
experimental and theoretical activities in the areas oflastic light-scattering-based measurements of plasmon dis-
strongly coupled plasma physics and condensed matter phygersion in high-quality low-density 2D electron liquifig].
ics. Foremost in the area of strongly coupled plasma physic®ne would expect that similar high-experimental tech-
are the pioneering experiments of Gilbettal. where laser- njques will become available also to bilayers and double
cooled classical ions in a cryogenic trap spontaneously orgayuantum wells in the near future.
nize themselves into layered one-component plasma struc- This paper addresses the problem of longitudinal collec-
tures in highly correlated liquid and solid phaddd [see tive mode dispersion in the strongly coupled zero-
Refs.[2,3] for related molecular dynamio@D) and theo-  temperature electronic bilayer liquid. The symmetric bilayer
retical studie$ In the area of condensed matter plasmasis modeled as two equal-density; =n,=n=N/A) monolay-
there haS been ConSiderab|e intel’eSt in the fabrication Cgrs Of mob"e e|ectron®r h0|e9, each |ayer immersed in its
high+ multiple quantum well structures of parallel charged-own two-dimensional uniform neutralizing background of
particle layerg4]. So far, advances in modern semiconductorgpposite charge. The N2 charges occupy the large but
nanotechnology have made it possible to routinely fabricat§ounded area in the planesz=0 andz=d of a Cartesian
high-mobility single two-dimensional(2D) layers in a coordinate systend being the interlayer spacing. The inter-

strongly correlated Coulomb liquid phase at temperaturegction potentials for the symmetric charged-particle bilayer
well below and comparable with the Fermi temperature. Exzre

perimental studies pursued in this domain inclddeecent

$11(1) = ool1) = (ed),  Pror) = ¥ (es\r? + d?),
$11(0) = o) = 2% (),
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measure of the in-layer coupling strength in the zero-be taken into account through the average RPA field. The
temperature quantum domaira=1/\Van being the 2D intralayer correlations are accounted for via a scalar static
Wigner-Seitz radius andg=#%c./me the effective Bohr ra- local field G(q) taken from the Ref[22] quantum Monte
dius; g is the dielectric constant of the substrate. Carlo (QMC) pair correlation function data for the 2D elec-
Historically, the longitudinal collective mode structure of tron liquid in the ground state. The approd€}ii)] followed
layered electron gases was studied first in relation to théy Swierkowskiet al. [21(b)], by Liu et al. [21(c)], and by
type-l superlattice in the hydrodynamic approximati@  Zhang[23] allows also for interlayer correlations by using a
and in the random-phase approximati®PA) [9,10]. It was  static local field matrix which can be generated by adaptation
found that the RPA longitudinal mode structure consists of arf the conventional STLS-type approximation scheh8]
isolated 3D bulk plasmon and a band of acoustic modeso the charged-particle bilayer. Predicated on the assumption
[8,9]. The RPA mode structure of the charged-particle bilayetthat the interlayer interactions are weak, the treatments of
was studied by Das Sarma and Madhukar and by SantorRefs. [21(b),21(c)] then use the QMC 2D pair correlation
and Giuliani[11]. The longitudinal mode structure consists fynction data of Ref[22] as an input to the explicit calcula-
of an in-phase(+) mode (where the two layers oscillate in tjgng of Gy4(q) andGy,(q). A somewhat more sophisticated
unison and an out-of-phase—) mode (where the oscilla- 5504 Qi )] followed by Tanatar and Davoudp4] is

tions of the two layers exhibit a 180° phase difference based on a STLS-like a S
o . ; - pproximation schei2g], referred to
Within the RPA, the in-phase plasmon has the typioalq as the “QSTLS,” which is formulated from a quantum me-

—0)~+q corresponding to the optical mode of an ISOIateOIchanical Wigner function kinetic equation formalism, and

2D layer of density 8, while the out-of-phase plasmon is .. : " ;
acoustic,w_(q— 0) ~q [11]. To better facilitate comparison \;V:('jcg fzaqatigesdynamlcallocal field correctionsGy(q, )
12\4 .

with experiments on the layered electron gas in the 1 .
(high-dgnsity regime, Jain gnd Alleri10(a)] %ubseqlﬁfmly The above three approaches share the following features.
(i) They lack a consistent treatment of strong interlayer

derived the RPA plasmon dispersion relations for semicon- _ _ ) . .
ductor multilayer systems consisting offiaite number of ~correlations: while the intralaye®,,(q) is obtained from
equal-density layers. Their theoretical predictiphg] about ~QMC simulations, the interlayeB,,(q) is either taken to be
the RPA dispersion of the out-of-phase acoustic plasmons af€ro or calculated as a weak perturbation. o

in good agreement with measurements from Raman scatter- (i) Calculations of the plasmon dispersion are limited to
ing experiments in the lows regime[12]. thers<8 coupling domain. _

In the strong coupling regime, the RPA is no longer ap- (i) The STLS and QSTLS approaches fail to comply
plicable. In the high-temperature classical domain, two subWith the third-frequency-momert{®)) sum rule[20,26],
stantially different theoretical approaches have been prowhich is known to play a central role in the long-wavelength
posed: The first is the conventional 3D Singwi-Tosi-Land-Plasmon dispersion in strongly coupled isolated 2D charged-
Sjolander(STLS) [13] approach adapted to the calculation of particle layerd27,28. In fact, they completely fail to repro-
the dynamical dielectric matrix for the type-I superlattice duce in the out-of-phas@w® sum-rule coefficient the cru-
[14]. The second approach invokes the quasilocalized charggally important nonvanishing long-wavelendip— 0) term.
approximation(QLCA), introduced by Kalman and Golden (iv) The predicted out-of-phase plasmon dispersion is al-
[15], which was applied to the type-l superlatticks] and  ways acoustic. The mode is softened by exchange-correlation
bilayer[15(b),17] configurations. These latter studies predicteffects such that, fors above some critical value-8
that strong Coulomb interactions bring about substantial21(a),21(b)], or for sufficiently small layer separations
modifications in the RPA description of plasmon dispersion[21(c),24], the acoustic plasmon ultimately merges with the
most notably, the occurrence ofja- 0 finite frequencyen-  single-particle excitation region and is quenched by Landau
ergy gap in the out-of-phase longitudinal collective mode. damping.

This mode, which is gapless in the RPA, is shown to exhibit The approach presented in this paper removes the limita-
this remarkable effect once stroimgerlayer correlations are tions of the approaches cited abovg. G;1(q) and G;,(q)
taken into account. This prediction has recently been conare treated on an equal footing made possible by the avail-
vincingly confirmed by the molecular dynamics simulationsability of pair correlation function data generated by the dif-
of classical charged-particle bilayers carried out by Doeko fusion Monte Carlo(DMC) studies of Rapisarda and Sena-
al. [18] and by Ranganathan and John$d8]. On the theo- tore[29]. (ii) The present study is carried out over a wider
retical side, a recent sum-rule analy$”0] of the long- range of intralayer coupling values extending uprie 30,
wavelength behavior of the in-phase and out-of-phase dywith emphasis placed on understanding how the longitudinal
namical structure functions further suggests that the energgollective mode dispersion is modified by strong interlayer
gap persists over the entire classical to quantum domain aihteractions well beyond the RPAiii ) The method followed
the way down tol'=0. in this paper generates a dielectric matrix that almost exactly

In the low-temperature quantu(@) domain, three some- satisfies the third-frequency-moment sum ruie) It dem-
what related theoretical approaches have been used for tlomstrates that a remarkabip— 0 finite frequency(energy
calculation of the dielectric matrix and plasmon dispersiongap, predicted by Golden, Kalman, and co-workers for
primarily in strongly correlated charged-particle bilayers.strongly coupled layered charged-particle systems in the
The approachQ(i)] followed by Neilsonet al.[21(a)] com-  classical domaifi15-20, also exists in the zero-temperature
pletely neglects interlayer correlations beyond the RPA undequantum domain. The theoretical confirmation of the exis-
the assumption that the mutual interaction of the layers catence of the energy gap in degenerate electronic bilayer lig-
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uids is the single most important result of the present workessential to the development of the present analysis, are pro-
The approach followed in this paper is based on thevided here. A full compilation of the details of the DMC
guasilocalized charge approximation, an approximatiorstudy is availablg¢29(e)].
method that has proved to be consistently successful in the Both the DMC simulations and the extended QLCA cal-
description of collective mode dispersion in strongly coupledculations in the present work are limited to the extent that
classical Coulomb liquids, as borne out by comparisons withiunneling between the two layers is ignored. Consequently,
a series of MD simulation§15(b),18,30-32. The develop- the range of validity for the present analysis is necessarily
ment to be followed here parallels that of a recent companionestricted to layer separatiods>ag. Note, however, that for
paper[33] by three of the authors where they extended the ;> 1, this condition still substantially allows fat<a, and,
QLCA dielectric response function in a way that makes itconsequentlystronginterlayer interactions.
suitable for the description of collective mode dispersion in  To summarize, the primary goal of this paper is to con-
strongly coupled 2D Coulomb liquids in the quantum do-struct and analyze the dielectric matexg(q, w), for a zero-
main. The further extension to the quantum bilayer configutemperature symmetric bilayer in the strong coupling regime.
ration generalizes the RdB3] single-layer scalar formalism From this dielectric matrix, we derive the dispersion relation
to a matrix formalism. for the longitudinal in-phase and out-of-phase collective
To briefly reiterate what was stated in R¢B3], the  modes. The energy gap mentioned above emerges as an in-
QLCA was formulated by Kalman and Golden some timetrinsic feature of the out-of-phase mode.
ago[15(a)] for the express purpose of describing collective  The organization of the paper is as follows. In Sec. Il, we
mode dispersion in a variety of classical Coulomb liquiddevelop the extended QLCA for bilayer systems and we cal-
configurationd 15-17,28,34 in the strong coupling regime. culate e55(q,w) and its diagonalized form with elements
The basis of the formal development of the QLCA is that theg, (¢, w). The dielectric matrix contains intralayer exchange-
dominating feature of the physical state of the plasma withcorrelation and interlayer correlation contributions beyond
I'=¢e?/(eaksT)>1 is the quasilocalization of the charges. the RPA that are ultimately expressed in terms of the pair
This physical picture suggests a microscopic equation-ofeorrelation functions generated from the DMC computer
motion model where the particles are trapped in local potensimulations[29] cited above. In Sec. Il, we also analyze the
tial fluctuations. The particles occupy randomly locatedt  behavior of thee,(q,w) first as functions ofj in the static
certainly not uncorrelatgdsites and undergo oscillations (4»=0) limit and, then in the dynamicdlw+# 0) domain, as
around them. At the same time, however, the site positionfynctions ofw for fixed values ofg. In Sec. lll, we analyze

also change and a continuous rearrangement of the underlze plasmon dispersion relations from the zeros.gf], w).
ing quasiequilibrium configuration takes place. Inherent inconclusions are drawn in Sec. IV. B

the QLC model is the assumption that the two time scales are

well separated and that for the description of the rapidly

oscillating motion, the time averageonverted into an en- Il. DIELECTRIC MATRIX
semble averageof the drifting quasiequilibrium configura-

tion is sufficient. . . :
A unique feature of the extended QLCA developed in this/€SPOnse matrix for strongly coupled charged-particle bilayer
liquids at zero temperature. Paralleling the H&f3] devel-

paper is that it reproduces the crucially important exchange ) ) A
correlation contributions to théw?) sum-rule coefficients. ©OPMent, the starting point for the present derivation is the

The connection between the in-phase plasmon dispersion arﬁéassical(cl) dielectric matrix that results from the QLCA
the in-phasew?) sum-rule coefficient can be inferred from LL12(P):15(C)]:

the discussion surrounding the 2D E@®) and (3) in Ref. n?
[33]. However, the connection between the out-of-phase eas(0,®)|o = Sap — > Iacd)—=
plasmon dispersion and the out-of-phase sum-rule coefficient c Mw
is even more compelling, since it is the interlayer correla- ne -1
tional contribution to the latter that dominates in tipe-0 x[l - _2D(Q)}
limit, and it is precisely this contribution that emerges as the Mo CB
g—0 energy gagdsee Eq.(19) below]. It is the complete (2)
violation of this sum rule by the other competing theories
that is responsible for the incorrectly predicted out-of-phase is the(2x 2) identity matrix andng?/m)D(q) is the purely
acoustic dispersion in the strong interlayer coupling regimecorrelational part of the dynamical matrix. Equati®) is
Crucial to the extended QLCA approach is the descriptiorderived from the microscopic equation of motion for the col-

o_f the ppsitions of the Ioca}lized particles in terms of equilib- | tiye coordinategzg(t), defined through the Fourier repre-
rium pair correlation functions. These latter for the symmet- N N =< Zq o L=
ric electronic bilayer liquid have been generated by RapSentation&,(t)=(1/\NmZ&atexpliq-x,) relating &4 to
isarda and Senatorf@9(a)—-29c),29(f)] over a wide range the displacemeng), of particlei in layer A. The QLCA ma-
of rg and d/a values from diffusion Monte Carlo simula- trix elements are expressed in terms of the 11,12 static
tions. Some of these pair correlation function data have alstructure functions, or equivalently, in terms of the 11,12
ready been published along with the phase diagranpair  correlation  functions hug(r)=(1/N)Z,[Sag(q)

[29(a)—29(d),29(f)]. Additional results of these simulations, —dxglexpiq-r). One obtaing15(b),17]

In this section, we formulate the longitudinal dielectric

(AB,C=1,2.
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ergy of the particles. In order to accomplish this, we observe
that in Eq.(2) the ng?/(mw?) factor is readily identified as
the Vlasov density response function corresponding to the
momentum distribution functionf(p) ~nd&(p). One may
therefore assume that for a Fermi distribution of momenta,
the appropriate replacement farf/ (mw?) is the Lindhard
matrlxX (q ®)=x0(q, ®) Spg, Where

E f(lp + (1/2)q]) - f(|p - (1/2)q])
ﬁA w+Gimp-q+iy '

Xo(d, @) = )

The resulting dielectric matrix takes the form

eap(d, ) = pg~ % dac(@xo(d, 0)[I - Xo(qyw)D(q)]E%a

8)

(A,B,C=1,2. We note that the dielectric matrix and all
other physical quantities can be diagonalized by rotating into
the space spanned by the in-ph&$¢ and out-of-phasé—)
directions: for the symmetric bilayer, the resulting matrix
elements  are e.(q,0)=e1(d,w)*e1(q,w),  ¢.(Q)
=¢11(0) £ P12(q), etc. The diagonalization of E{8) there-
fore results in

eu(@w)=1- ¢-(Dxo(d, @) R
1 - xo(d,w)[D11(q) = D12(q)]

The D(g) matrix elements in Eq98) and (9) are formally
identical to D44(q) and D15(q) in Egs. (3) and (4), but it
should be borne in mind that tH&g(q) andhag(r) are now
the static structure functions and pair correlation functions
appropriate for the zero-temperature symmetric electron bi-
layer liquid and, as such, these latter quantities embody all
the exchange-correlation effects. Accordingly;;(q) and
D1x(q) are to be calculated from Eqé3) and (4) with the
input of the diffusion Monte Carlo pair correlation function
data presented in this work and in REZ9].

A central role is played by the in-phase and out-of-phase
third-frequency-moment sum rules which, for the bilayer
system under discussion, take the fdr20,26]

1(” 1

— dww®

Wf—w Im si(q,w)
_ (| NP
=-¢.(q) m |:

¢+(Q)+3< k|n> 2

% 2\ 2
+ %Z[Dn((ﬂ + Dy ()] + (%) ]; (10

The derivation of Eq(2) is predicated on the assumption that D11(d) andD15(q) were defined below Ed9); (Ey,) is the
random motions are negligible: this is a reasonable assumgxpectation value of the kinetic energy per particle for the
tion for a low-temperature classical charged-particle bilayefnteracting system consisting of a noninteracting @rand

in the strong coupling regime where the potential energya correlationalc) part. It is required that the,(q, w) satisfy
dominates over the thermal energy that is responsible for ththese sum rules. In fact, we note that the high-frequency
random motion, so that at sufficiently low temperatures oneexpansion of Eq(9) provides the average energy per particle

can neglect the random motion of the particles. In contrastfor the noninteracting systeniE,°,

instead of(E,;,). The

for a degenerate system, the low temperature does not ensurensequences of this discrepancy, as they pertain to the in-
that the random motion of the particles is negligible, and ongphaseq— 0 plasmon dispersion, have been analyzed in the
should therefore take account of the ground-state kinetic ereompanion study33] of the 2D isolated layer. The findings
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and quantitative estimates therein certainly should be appli- ; s}
cable to the present study fal/a sufficiently large, say, rs=10
d/a>1.5 where interlayer correlations are weak 1.25}
[18(b),29(a)]: to reiterate what was stated in REB3], since
the missing correlational part of the kinetic energy would act ~ 1r
to increase the kinetic energy, H§) should lead to aover- el
estimateof the softening of the in-phase plasmon dispersion g 0.75
brought about by the effect of exchange and correlations re- 5 gt
siding in theD; andD4, matrix elements. The magnitude of
the overestimate decreases with increasingnd in therg 0.25}
— oo limit, where the total kinetic energy ceases to contribute
to the smallg dispersion, one should recover the correct in-
phase oscillation frequency characteristic of the isolated 2D(y) r/a
Wigner crystal[35] for d/a values well above 1.5. Fat/a
< 1.5, the situation is not expected to be qualitatively differ- 1.5}
ent, although the importance of the correlational part of the rs=10
kinetic energy will depend on the layer separation, since the 1.25}
latter affects the extent to which the particles are localized.

In the case of the out-of-phase plasmon dispersion, the/H\
missing correlational part of the kinetic energy is not ex-
pected to be an issue, since fibfa<<1.0 and in the smalit &
domain of interest, theD(g?a®) kinetic energy and RPA 0.5}
acoustic plasmon oscillation terms in the sum-rule coefficient
are overwhelmed by the promine@f1) term proportional to 0.25¢
[D11(g)—D14(q)] that gives rise to thg— 0 energy gapsee
Egs.(19) and(21) below]. This observation leads us to con-
clude that, in the long-wavelength domain, agreement be{b) r/a
tween the exact sum-rule coefficietO) and its third-
frequency-moment counterpart generated fr8n is very

gOEIJ_(?ilndeetd_. | "~ dD o b | bilayer in the normal fluid phase atrg=10 and d/a
e matrix element®,,(q) andD,,(q) are to be calcu- =0.2,0.5,1.0,1.5r/a is the dimensionless in-layer separation dis-

lated from Eqgs(3b) and(4b) with the input of the DMC pair {5406 a=1//7m being the 2D Wigner-Seitz radiu) gy4(r): the
distribution function data mostly for the normal fluid phase e with the highest peak correspondsifa=1.5; (b) gyo(r): the
[29a),29(c),29(f)] and, in one particular cases=20.d/a  cyrve with the highest peak correspondsifa=0.2.

=1.5), for the fully spin-polarized fluid phadsee discussion

below). Figures 1-3 show the pair distribution functions (Nomogeneoysfluid phase or in its immediate vicinity
0ag(r)=1+hag(r) as functions ofr/a for 10<r,=<30, and [29a),29b),29(d)]. i i
0.2<d/a=<1.5. Note that ford/a=0.2,g;,(r) exhibits oscil- Consequently, ar,=10 and 30, the spin-unpolarized
lations that are more pronounced than those exhibited b§ae(r) data displayed in Figs. 1 and 3 are the appropriate
914(r) [29(2),290b)]. As the layer spacing increases, the os-Inputs into the Eqgs(3b) and (4b) formulas for the computa-
cillations ingy(r) intensify at the expense of thosegp,(r).  ton ©f D11(a) andDy,(q). Forrs=20 andd/a=0.2, the ap-

At layer separationsl/a= 1.5, g;,(r)~ 1, indicative of iso- ProPriate inputs again are the spin-unpolarizpg(r) data
lated 2D layer behavior. For a comparison with the corre-displayed in Fig. 2. At this; value, ford/a=1.0 and 1.5, the

sponding pair correlation function data for the classical bi-9ae(r) data for the fully spin-polarized and normal fluids are
layer, see Ref[36]. very nearly the same; thus, it makes little difference which of

The various relevant phases of the symmetric electron bithese data are selected as inputs into E8fs. and (4b): we
layer have been mapped in Ref29(a),29(d)]. At r,=10; the choose as inputs the spin-unpolarizegs(r) data ford/a

o
-
S}
w
=~
(8]
S

1.

0.75}

o
=
[s]
w
s
[8)]
(22}

FIG. 1. Diffusion Monte Carlo intralayefll) and interlayer
(12) pair distribution functionsg;j(r) for a symmetric electronic

bilayer is in the normalhomogeneousfluid phase for all =1.0 and the fully spin-polarizedag(r) data ford/a=1.5.
values ofd/a. At r¢=20, the normalhomogeneousfluid is ~ These data are also displayed in Fig. 2.
still the stable phase fai/a<0.4; the bilayer then crystal- To facilitate the collective mode analysis that follows be-

lizes for 0.4<d/a<1; thereafter, ford/a>1, the crystal lowin Sec. lll, we introduce the more convenient dimension-
subsequently melts into a fluid phase. This region in thdess quantityGag(q)=-[eq/(27€*)IDag(q), which formally
phase diagram is in close proximity to the boundary Separaﬂs a static local field correction. One should bear in mind,
ing the fully spin-polarized fluid phase from the unpolarizedhowever, that the physical justification for this term is differ-
fluid phase. Along this boundary, the DMC-generatedent from that of the conventional static mean fie@,(q)
ground-state energies of these latter two phases are with@ndGy5(q) are shown in Fig. 4 as functions of dimensionless
combined overlapping error bars, precluding the possibilityin-plane wave numbeq=q/qgg (g==v2mn) for differentrg

of specifying one or the other phase with any degree of cerand d/a values. The smally behavior of G;; and G, is
tainty. Forrs=30 andd/a=<0.2, the bilayer is in the normal given by Eqs(5) and(6) which stipulate that to lowest order
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rg=20

g11 ()
o
~]
w

o
-
N
w
-~
(8]
[+)]

r =20

FIG. 2. Diffusion Monte Carlo intralayefll) and interlayer

(12) pair distribution functions for a symmetric electron bilayer at

r<=20 andd/a=0.2 (normal fluid, 1.0 (normal fluid, 1.5 (fully

spin-polarized fluigl (a) g;4(r): the curve with the highest peak
corresponds td/a=1.5; (b) g;5(r): the curve with the highest peak

corresponds tal/a=0.2.

in g G1(q—0)=-G(rg,d/a)/g and G;,(q—0)
=G(rs,d/a)/q, where
1 rgyr) 3d?
G(rg,d/a) = Zfo dr(r2+d2)3’2 T2+ >0. (1)

At large g, one can readily show from Eg&3) and (4) that

rs=30

FIG. 3. Diffusion Monte Carlo intralayet11) and interlayer

(12) pair distribution functions for a symmetric electron bilayer in

the normal fluid phase at=30 andd/a=0.2. The dashed and full
curves labely;5(r) andg4(r), respectively.

PHYSICAL REVIEW E 71, 036401(2009

Gas (q)

-1} rs:10
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2
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{b) a/ar
1
\
0.5}
G
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)
-0.5
d/a=0.2
rs=30
_1.
0 2 4 6 8 10
© a/ar

FIG. 4. Intralayer(11, solid curvesand interlayer(12, dashed

curves dimensionless local field factors for the symmetric elec-

tronic bilayer as functions of dimensionless wave nuntibeq/ Jg;
ge=v2mn. (8 (Normal fluid) r¢=10 andd/a=0.2,0.5,1.0,1.5; the
lowest-lying G;,(q) curve corresponds td/a=0.2; the highest-
lying G15(q) curve corresponds td/a=0.2. (b) rs=20 andd/a
=0.2(normal fluid, 1.0 (normal fluid, and 1.5fully spin-polarized
fluid); the lowest-lyingG;;(q) curve corresponds td/a=0.2; the
highest-lying G;5(q) curve corresponds td/a=0.2. (c) (Normal
fluid) r¢=30 andd/a=0.2.

G1(q— ») =[1-g;4(r =0)] + O(1/q), (12

Gia(q — ») =[1 - g1r = 0)Jexp(— qd). (13

In the d— oo limit, one recovers from Egg12) and(13) the
2D Kimball identity [37]
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g=1.0
4 2
2 1 '
6? — 0 /
|E 0 Ig
) g "L
-2 =
& _of
9 =3.978]
_4 _3 i
0 2 4 6 8 10
(a) q 0 2 4 6 8 10 12 14
20 (a) (7]
g=3.0
15 1
10
0.5}
(=]
it '3
v -5 o é -0.5
-10 =1.885
oo g -1}
-15 dp =2.795
-1.5
0 1 2 3 4 5 6
(b) q 0 5 10 15 20
FIG. 5. In-phasé+) and out-of-phasé—) static dielectric func- (0) w
tions for the normal fluid phase at;=20 and d/a=0.2. (a) g=4.2
£.(q,0=0) develops a first-order pole a@f;=3.978; (b) _(q,w 10
=0) develops first-order poles gf,,=1.885 andy,=2.795. ol /
lim [1 - Gyy(q)]=gus(r =0) w4
q 3 4
valid for any static local field correctioB;4(q) that one may d 2t
choose to approximate the exdgi,(q,w) for all values of o
w. For further clarification, see Rdf33]. o0
Figure 5 shows how the extended QLCA static in-phase _of
and out-of-phase dielectric functions(q,w=0) vary with
dimensionless wave numbe=q/ge for r=20, d/a=0.2. -4
Figures 6-8 show how their dynamical counterparts 0 5 10 15 20 25 30
Ree,(q,w) vary with dimensionless frequency=fw/er () W
(eg=mnh?/m) over a range of fixed| values. We can note a o ) ) _
number of points of interest in the behavior of Réq, ). __ FIG. 6. Ree+(&w) as a function of dimensionless frequency
Consider first Re,(q, ) - w=wm/(7nh) for g=1.0,3.0,4.2; normal fluid phase |at=20 and
+ ) . —
(i) The in-phase isothermal compressibility is negative ford/a_o'z'
sufficiently high coupling in the classical domdiB6] and it
must be negative as well in the quantum donj&i®,38. The K1=14+ SrsEntEpp Eﬂz b1 @)oo q')
compressibility sum rulg20] dictates thate.(q,0) should * 8 ¢€la 16mh2< Tt 12
also develop a first-order pole @& 0: 4
_ 11 3,
2\2rg X{Sq d--(q d)z], (16)
e.(q— 0,0 =K,—— + O(1); (15
where E11=(n/2) [dr ¢11(r)hyy(r) and Ei,

K, is expressible in terms of the physical intralayer and in-=(n/2) fdr ¢5(r)h.5(r) are the intralayer and interlayer po-
terlayer compressibilitie§20]. Its value in the present ap- tential energies per particle, respectively. THas< 0 in the
proximation is calculated from Eqg¢5), (6), and(9) as strong coupling regime of interest here.
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8]
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=
1
iy
o

0 3 r ¢ 8 19 0 5 10 15 20 25 30
(a) u_) (a) w
g=1.0 q=4.0
3
at
21

=

Rel[e_ ()]
Rele_ (w) ]

_2.
_1.
_4.
0 2 4 6 8 10 12 11 0 5 10 15 20 25 30
(b) w (b) w
= q=4.1
1 2.5 10
0 __/_- 8
— =1} : 6.
|§ Ié
J -2 2' 4
n Q
& _af 2 of
-4} 0
0 5 10 15 20 0 5 10 15 20 25 30
© P (© @

FIG. 7. Res_(q,w) as a function of dimensionless frequency __ FIG. 8. Reg*(&‘”) as a function of dimensionless frequency
@=wm/(mnh) for =0.5,1.0,2.5; normal fluid phase @t 20 and w=om/(7nh) for g=3.0,4.0,4.1; normal fluid phase mt=20 and

d/a=0.2. d/a=0.2.

(i) On the interval G=q<q, whereqy, is the location of ~We note that the..(q, =0) curve never penetrates the “for-
a second first-order pole,(q, »=0) <0 [Fig. 5a)]. On this  bidden” domain G<e.(q,0=0)<1[39].
interval, thee,(q, @w=0) curve is an inverted U with maxi- (iii ) The first-order pole that develops@tqy survives as
mum lying below theq axis. For6>65, £.(q,w=0) de- well for o # 0 arEI in the irlervauESquI, the pole moves
scends from positive infinity and approaches unitygase  along the locusn=w:(q); g+ (=5.5 forre=20,d/a=0.2) is
[Fig. 5(@)]. We find thatTO:3.98 forrg=20 andd/a:O.Z;Eg the value ofg wherew; (q) reaches the right boundary of the
ranges from 3.0 to 4.5 as increases from 10 to 30, its pair excitation continuum. More will be said below abggt
dependence on thd/a ratio being very weak. A similar (iv) On the interval B=q<(qp, Ree.(q,w) as a function
qualitative behavior has been shown to prevail in the classiof w begins inside the RPA pair excitation continuum with a
cal domain both for 2D and bilayer systef®6(a),36(c)].  finite negative value atv=0 and increases monotonically
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crossing thew axis. Forq below some critical valuey; (vii) On the interval B=q<q, the low-frequency behav-
<qy, this crossing takes place outside the pair excitatiorior of Ree_(q, ) is complicated due to the presence of the
continuum[Figs. 6a) and Gb)] at the in-phase plasmon ex- poles alongws. (q) and in the vicinity ofgy,. Since both of
citation frequencyw.(q), and thereafter approaches unity asthese poles are spurious, we do not dwell on the details of
w— [q¢~3 forrg=20,d/a=0.2; see Fig. ®)]. . this behavior. Within this interval, foq below some critical

(v) On the intervalgy<q=<q:, Res.(q, ) starts with & yajueq (=2.44 forr,=20,d/a=0.2), Ree_(q, ) crosses the
positive value atw=0 and approaches infinity a® ap-  ; axis from below at the out-of-phase plasmon frequency

proachesw: (q), the location of the pol¢Fig. 6(c)]. For @ ©.(), and thereafter approaches unity@s-« [Figs. 1a)
>w:(g), Ree.(q,w) emerges from negative infinity and and 7b)]
crosses thaw axis. This crossing occurs always inside the :
pair excitation continuum and, as such, cannot represent
collective excitatio Fig. 6(c)].

(vi) In the intervalg>0q:, Ree.(q,w) is always positive,
develops a finite positive peak, and then approaches unity

(viii) On the intervalj,<q=<gs, Res_(q, w) starts with a
S‘ositive value aiw=0 and approaches infinity as— w.(q),
the location of the poléFigs. §a) and 8b)]. For o> w.(Q),
XRee_(q,w) emerges from negative infinity and crossesdhe

s 0. axis. This crossing occurs always inside the pair excitation
Turning now to Res_(q, »), we find that its morphology ~continuum and, as such, cannot represent a collective excita-
is more intricate. tion [Figs. §a) and &b)].

(i) For sufficiently high coupling, the compressibility sum  (ix) On the intervab>q., Res_(q, ») is always positive,
rule [20] requires that_(q— 0,w=0) assume a finite nega- develops a finite positive peak, and then approaches unity as
tive value for the classical bilaydi36(a),36(c)]. Again, it w— o [Fig. 8C)].
must be negative as well for the quantum bilay26(a)]. As stated above, thg, poles survive foro#0 in the
However, according to the extended QLCA model(q  region below and including the right boundary of the RPA
—0,w=0)=1+dq?/(Ga?) >1 [Fig. 5b)]. Indeed, this same pair excitation continuum where they move alantfq) loci.
defect also shows up in the QLCA treatment of the classicaElaborating on this, we analyze.(q,w) in that region,

bilayer[17]. o o where[40,41]

(i) On the interval Bsq=<qy, e-(q,0=0) increases m 1
from e_(q=0,w=0)=1 and develops a first-order pole @t = — 41— = (e-992- 492
=g, [=1.885 forrg=20, d/a=0.2; see Fig. &)]. For the Xo(@. ) mh? 262[ (©=-a7) a

reason stated irfi) above, this pole must be regarded as
unphysical. - +V(w+q?)?- 452]}. (17)
(ii ) On the intervah,,<q<dq,, £-(q, w=0) behaves in a
way similar toe,(q, w=0) on the interval 6<q<qg: it de-  From Eq.(17), we observe thay(q, =-29+q?) is always
velops a second first-order pole@tq, [=2.795 forrs=20,  npegative on the right boundary of the pair continuum. Then
d/a=0.2; see Fig. @)] and takes the form of an inverted U according to Eq(9), the in-phase and out-of-phase dielectric
with maximum well below they axis. Thereafter fog>d,,  functions on the right boundary each develop a discontinuity
e-(q,0=0) descends from positive infinity and approachesat a certairg value, saygt=q%(r,d/a), where the denomi-
unity asq— . Again, a simi!ar qualitative behavior has been nators 1 4o (@) xo(0, =20 +G2)[G11() £Gyx(q)]  vanish.
reported for the classical bilayg86(a),36()] The continuation of these discontinuities as first-order poles
(iv) The positive value o_(q,w=0) leads to the forma- ntg the O<w< -29+02, g =2 domain is a consequence of
tion of a first-order poldFigs. 1a) and 7b)] at a finitew  the fact that the expressidi7) for xo(q,®) remains nega-
=w.(q) on the interval 6<gq=<gq.., whereq. (~1.57 for  {ive throughout that entire domain. For a given pair of
rs=20,d/a=0.2 is theq value wherewr. (q) reaches the left (r_ d/a) values, the lock(q), gt <g=gZ, of all such poles
boundary of the pair excitation continuum. The pole movesrom theq axis up to the right boundary then form the fami-
along the locus ofv.. (). Again, this pole is spurious. lies of in-phase and out-of-phase curves shown in Figs. 9 and
(v) The pole that develops afy, is within the RPA pair  10. Evidently, the Fourier components of the in-phase and
excitation continuum and, in contrast to the behaviogpf  out-of-phase total charge density perturbations are perfectly
andq, (introduced below it does not survive fow>0; it  screened at thesg w values. Our analysis indicates that the
rather generates a complex sequence of maxima and miningle of &,(q, w) persists forrg values all the way down to
in Ree_(q,®) in its immediate vicinity. The appearance of \2/[G,,(2)+G,,(2)]~ 2.02 for arbitrary values od/a. This
the pole represented hy.. (q) above the left boundary of the yalue compares favorably with the Hartree-Fack /2
continuum is, however, intrinsically linked to the existence=2.22 prediction6,38], and with the QMCrs~2.03 value
of the pole atqy, and the former can be regarded as the[22] and experimentally observed valug=1.71[38] for the
continuation of the latter outside the continuum. onset of negative compressibility in 2D degenerate electron
(vi) The first-order pole that develops@e, survives as  liquids. The same critical;=~2.02 value results as well for
well for w#0, and in the intervalqy<gq<g., it moves the out-of-phase pole as well fat/a=1. For sufficiently
along the locus»=w. (q); q. (=4 forrs=20,d/a=0.2) isthe  small layer separations, however, the existence of the out-of-
value ofg wherew. (q) reaches the right boundary of the pair phase pole can become stronglya dependent. For ex-
excitation continuum. More will be said below abogi = ample, the out-of-phase pole does not develop,afl0 and
along withq. d/a=0.2[nor¢=10 curve displayed in Fig.(B)], whereas it
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407 4/a-0.2
30}
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FIG. 9. In the region & w=-2q+q? q=2: Loci of first-order FIG. 10. In the region & w=-2q+q?2,q= 2: Loci of first-order
EOlseS(;)f tgeb)d"(eﬁ)w:n;e(slpgnfz? iﬂgcim Eﬂ)uicc?lcﬁfstzd;gn poles of the dielectric response functiangd, ), calculated from
_q A ’ ' - ) p Eqgs.(9), (3b), (4b), and(17) for the normal fluid phasedg) in-phase
_0.2,_(a) in-phase curves far,=10,20,30;(b) out-of-phase curves and out-of-phase curves fofa=0.5, r.=10; (b) in-phase and out-
for rs=20,30. of-phase curves fod/a=1.0,rs=10, 20.

does develop al/a=0.5[see Fig. %a)] indicating that there €rdy gap(19), displayed in Fig. 11 as a function of and
is some value between 0.2 and 0.5, below whicky, )  9/& is a unique feature both of the QLCA approach of Refs.
ceases to develop any pole behavior [15-17 and of the extended QLCA approach of the present
' paper. As we have stated above, its existence in classical
bilayers has been confirmed by recent MD simulations
lll. PLASMON DISPERSION [18,19. Since the physical conditions leading to the finite-
We turn now to the calculation of plasmon dispersion infrequency gap are similar in the classical and quantum do-
the strongly coupled symmetric charged-particle bilayer lig-mains, .there is little doubt that the results of the classical
uid. We use the formulations of Stefd0] and Isiharg41]  Simulations are relevant to the present work as well. In ad-
for the zero-temperaturg,(q, ) in the extended QLCA for- dition, the sum-rule analysis of Re20] provides a further
mulas(9) for £.(q,®). The mode frequencies above and Ontheorencal basis for expecting similar such behavior in clas-
the left boundary of the pair continuum are then calculateus"cal and quantum bilayers.

. . . At long wavelengths, the in-phase and out-of-phase plas-
by equatings.(q, ) to zero withxy(q, ) given by[40,41] mon frequencie§20]

om 1 ——— 1 1 (3
Xo(Q,®) =~ %{ 1+ ﬁ[\*(w -9%)%-49° wi(q—0)= 2w§qa[1 - 5ad+ Eqa<er£(k)in + 7+>} ,
@+ g)?- 462]}. (18) 20
_ a3
In the q— 0 limit, ,(0)=0 and ®2(q— 0) = wipp+ wéqzad{l * E<ers%n + Y—)] ’
w_(q— 0) = wy\2aG = wepp, (19) (21)

with G=G(rs,d/a) given by Eq.(11); wp=v2mne?/(ma)isa  result from Eqs(5), (6), (9), and(18); &2, ,=1/r2 is the non-
nominal 2D plasma frequency. The correlation-induced eninteracting part of the kinetic energy per particle in Rydberg
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FIG. 11. Energy gap values as a function of layer separatian
for r¢=10 and 204@a) in units of the nominal 2D plasma frequency
wo=+\2mé€/ (egma); (b) in meV energy units for GaAs/AlGaAs.

units. The last right-hand-side members of EG§) and(21)
can be expressed in terms of the static structure functions:

oo

5a [~ 11
= '[Su(@) -1+ — 1-=q
320dQ[311(CI) ] SZqu{ 5qd

Y+

3
+ g(q’d)z]Slz(q’)exrt— q'd). (22)
Or, alternatively, in terms of potential energies:
_£|:Elli E12:| _ Zd_zw(ZBAP_ %’d_zl N ; rhy(r)
T 16| (Ha) | " 8a? w5 T 16aly (122
(23

E11=(n/2) [dr ¢14(r)hy4(r) is the intralayer potential energy
per particle andE;,=(n/2) fdr ¢,4(r)h;5(r) is the interlayer

PHYSICAL REVIEW E 71, 036401(2009

The straightforward calculation of the plasmon oscillation
frequencies in the regiom=2q+q?, q=0, is then carried
out by substituting the Lindhard density response function
(18) into Eq. (9) and equating.(q, ) to zero. Using the
more convenient dimensionless frequency notatiosiq)
=mw.(q)/(7n#), we obtain

q? 4

A-12 (2A.-1)

a@=ATy (24

—

/2 ——
‘;{[1 + expf- \200)] - [G1y(@ + GrA@ ]}

(25

Ar=1+

The analytical formula$24) provide the plasmon dispersion
curves up to the point where they make first contact with the
left boundary of the pair continuum at=q;. The in-phase
and out-of-phase dispersion curves and their RPA counter-
parts are displayed in Figs. 12-15 fQ=10,20,30 andi/a
values ranging from 0.2 to 1.5.

Figures 12 and 13 show that the in-phase plasmon mode
is not qualitatively different from the similar mode of the
isolated 2D layef33]. In particular, forq— 0, we see from
Eqg. (20) that the in-phase mode exhibits the typieat- Vq
dispersion which is always softened by the dispersion
coefficient portraying interlayer correlations and intralayer
exchange and correlations.

Figures 14 and 15 show how the energy gap can dramati-
cally modify the acoustic dispersion of the out-of-phase plas-
mon. With increasing layer spacing and consequently de-
creasing interlayer correlations, the gap frequengy,
becomes less and less pronounced and all but disappears for
d/a>1.5 at which point the separated layers become practi-
cally uncorrelated29a), see also Figs. (b) and Zb)]; at
d/a=1.5, Fig. 1%b) shows the dispersion of the out-of-phase
plasmon to be very nearly acoustic. This is precisely what
was predicted by Kalmaat al.[17] for the classical bilayer
and subsequently confirmed by the MD simulations of
Donko et al. [18]. The effect of the single-pair excitations
can be assessed from E@O0) and from Figs. 14 and 15
showing the RPA pair excitation continuum: as long as the
layer separation is not too lardd/a<1), the out-of-phase
gapped mode lies well above the continuum and is therefore
entirely immune to Landau damping. This is in marked con-
trast to the findings of Neilsoet al. [21] and Tanatar and
Davoudi[24]: their approaches predict that the out-of-phase

potential energy per particle. Our calculations indicate thaplasmon is acoustic and is softened by exchange and corre-
the v, plasmon dispersion coefficients are negative so thalations, so that it is no longer immune to Landau damping
they always act to soften the in-phase and out-of-phase plafeyond some criticalg value. On the other hand, this soft-

mon dispersion curves.

The dielectric matrix elemeni®) do not take account of
collisional (multipair excitationy damping, leaving Landau
damping as the sole mechanism responsible for the decay

ening of the slope of the dispersion curve is a common fea-
ture of all the above theoretical approaches including the
QLCA.

of We remind the reader of one noteworthy feature of the

collective excitations in the present study. At zero temperaenergy gap in the quantum bilayer: While it is true treda-
ture, the Landau damping is confined to the RPA pair excitive to the Fermi energy of the noninteracting 2D electron

tation continuum region of the,» plane. Foroe=0, the

gas the magnitude of the gapcreaseswith decreasing car-

equations for the left and right boundaries of the continuuntier density (increasingry), it is, in fact, the case that the

region are given by =2q+q? andw=-2q+q?, respectively.

absolutegap energydecreaseswith decreasing density ac-
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FIG. 12. In-phase plasmon dispersion curves for the symmetric FIG. 13. In-phase plasmon dispersion curves for the symmetric
electronic bilayer{a) d/a=0.2 andrs=10,20,30;b) d/a=0.5and  electronic bilayer(a) d/a=1.0 andrs=10 (normal fluid, 20 (nor-
r«=10. The full curves are calculated from Eq8) and (18) [or ~ mal fluid); (b) d/a=1.5 andrs=10 (normal fluid, 20 (fully spin-
equivalently, from Eqgs(24) and(25)], (3b) and(4b) with the input ~ polarized fluid. The full curves are calculated from Ed®) and
of the diffusion Monte Carlo pair distribution function dgghown  (18) [or equivalently, from Eqs(24) and (25)], (3b) and (4b) with
in Figs. 1-3 for the normal fluid phase. The dashed RPA curves arghe input of the diffusion Monte Carlo pair distribution function
calculated from Eq(9) with D;;(q) andD;,(q) set equal to zero; in ~ data(shown in Figs. 1-B The dashed RPA curves are calculated
(a), the highest ¢ value corresponds to the highest-lying RPA curve. from Eq. (9) with D141(q) andD;5(q) set equal to zero; iffa) and
The hatched region is the RPA pair continuumszq/ge, @  (b), the highestvalue corresponds to the highest-lying RPA curve.
=wm/(mnh). The hatched region is the RPA pair continuumsq/gr,

=wm/(mnh).
cording to the formulafwg,,=[10.7942]wy,, (MeV) [for . . . .
GaAs/qu_ Al As]. Figure 192?3) Ellustratesi tﬁ?g r()oin:./)TLis is competlng theorles_. OUI’. analysis is based onan extension of
in marked contrast to the classical bilayer where the absolu e classical quasilocalized charge approximatiQi.CA)

gap frequencyin hert increaseswith increasing intralalyer tlsgj"go t[‘gﬁ“a’;t.“”; domlgm. Tfhtf] develop[[nentkof the”elx-
coupling parameter. ended Q matrix formalism of the present work parallels

As to the region 6 w=-29+q2 G=2 on or below the the development of the Ref33] scalar formalism for the
right boundary of the pair continuum, our calculations indi- |so_||<_31;ed ZtD Izy%r. LCA f i f th ¢ K ik
cate that the determinant of the dielectric matrix does not e extended Q ormalism of tn€ present work, fike

possess any zeros there. Consequently, there are no collecti® Cl_assical counterpart, re_quires th_e input of the intralayer
excitations in this region ' and interlayer pair distribution functions. In fact, the result-

ing plasmon dispersion calculations are quite sensitive to the
structure of the interlayer correlations and therefore the pre-
IV. CONCLUSIONS cise determination of the latter is essential. Pair correlation
function data, generated from diffusion Monte Carlo simula-
In this paper, we have developed and analyzed a dielectritons and displayed in Figs. 1-3, are used in the present
matrix for strongly coupled symmetric charged-particle bi-calculations.
layers at zero temperature. This has been carried out over a The calculation of the dielectric matrix results in explicit
range of coupling values ¥r =30 not addressed in other expressions for the in-phase and out-of-phase dielectric re-
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15 : 15 .
d/a=0.2 7 P 4

. . b
FIG. 14. Out-of-phase plasmon dispersion curves for the sym-( ) 4

metric electronic bilayer(a) d/a=0.2 andrs=10,20,30;(b) d/a FIG. 15. Out-of-phase plasmon dispersion curves for the sym-
=0.5 andrs=10; q=0q/qg, @=wm/(7nh). The full curves are cal-  metric electronic bilayer fota) d/a=1.0rs=10 (normal fluid, 20
culated from extended QLCA Eqs9) and (18) [or equivalently,  (norma fluid; (b) d/a=1.5, r.=10 (normal fluid, 20 (fully spin-
from Egs.(24) and (29)], (3b) and(4b) with the input of the diffu- 5 jarized fluid; g=q/qe, @=wm/ (7). The full curves are calcu-
sion Monte Carlo pair distribution function data for the normal fluid |5i64 from extended QLCA Eq£9) and (18) [or equivalently, from
phase(shown in Figs. 1-B The inset in Fig. 1¢b) shows the Cross-  gqg (24) and (25)], (3b) and (4b) with the input of the diffusion

ing of the in-phase and out-of-phase dispersion curves. The dashgg,nte Carlo pair distribution function dag@hown in Figs. 1-B
RPA acoustic curves are calculated from E9). with D13(q) and  The gashed RPA acoustic curves are calculated from(@quith
D1,(q) set equal to zero; ifa), the highestg value corresponds to D.5(q) and D15(q) set equal to zero; iifa) and (b), the highest

the highest-lying RPA curve. value corresponds to the highest-lying RPA curve.

sponse functions,(q,») ande_(q,w), respectively, leading systems has already been predicted and extensively analyzed
to a description of the two longitudinal collective modes. over the past decade in a series of theoretical works
The Eq.(9) in-phase dielectric response functier(q, o) [15-18,2Q0. Recent molecular dynamics simulatigris3,19
exactly satisfies its third-frequency-moment sum rule in thenow confirm its existence in classical charged-particle bi-
rs— o limit, thereby guaranteeing recovery of the correct 2Dlayer liquids over a wide range of intralayer coupling
plasmon dispersion at long wavelengths indhe « isolated  strengths and for interlayer spacide< 1.5a. By contrast, the
2D layer limit [33,35. More importantly, the dominance at more traditional STLS and QSTLS approach2s,24 pre-
long wavelengths of the energy gap contributi@d) to the  dict that the out-of-phase plasmon is an acoustic excitation
Eq. (9) out-of-phase dielectric response functiariq, ), all ~ which should ultimately merge with the pair continuum
but guarantees near-perfect satisfaction of the out-of-phasehenrg exceeds some critical coupling val(i2l]. In the
third-frequency-moment sum rule farbitrary rg values. present work we find that as long as the layer separation is
That is to say, in the smat|-domain, the correlational part of sufficiently small(d<1.5a), the presence of the energy gap
the kinetic energy that is missing from E@) is of little  ensures that the out-of-phase plasmon is always well above
consequence, since it is absolutely overwhelmed by the erthe continuum and is thus immune to Landau damping.
ergy gap contribution. We recall that in the present work and in the companion
The main result of the present work is the demonstratioDMC simulations[29], tunneling between the two layers is
of the existence of the long-wavelength finite-frequency en+uled out so that the range of validity of the extended QLCA
ergy gap(19) [Fig. 11(b)] in the out-of-phase plasmon dis- is necessarily restricted to layer separatidnsag. We call
persion in the zero-temperature quantum domain. The exisattention to the marked distinction between the energy gap
tence of the energy gap in classical layered charged-particlkeported in the present paper and ¢jv0 plasmon gap in the

036401-13
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out-of-phase mode reported by Das Sarma and HW}dBly  elastic light scattering experiments on highmultiple quan-
the former is brought about solely by strong interlayer cor-tum well structures.

relations in the absence of interlayer quantum tunneling,
while the latter is brought about solely by interlayer tunnel-
ing in the absence of particle correlations.

As to experimental verification in the quantum domain,
the existing observations on semiconductor electronic bilay- This material was based upon work supported by the Na-
ers at smalk and highg values[43] can be reconciled with tional Science Foundation under Grants No. PHY-0206554
the minuscule energy gap that would exist in this parameteand No. PHY-0206695. H.M.’s participation in this research
range. The ultimate verification of the existence of the enwas also partially sponsored by the Vermont Space Grant
ergy gap in the zero-temperature quantum domain awaits inconsortium and by NASA under Grant No. NGT5-40110.
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