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We develop a dielectric matrix and analyze plasmon dispersion in strongly coupled charged-particle bilayers
in the T=0 quantum domain. The formulation is based on the classical quasilocalized charge approximation
sQLCAd and extends the QLCA formalism into the quantum domain. Its development, which parallels that of
the two-dimensional companion paperfPhys. Rev. E70, 026406s2004dg by three of the authors, generalizes
the single-layer scalar formalism therein to a bilayer matrix formalism. Using pair correlation function data
generated from diffusion Monte Carlo simulations, we calculate the dispersion of the in-phase and out-of-phase
plasmon modes over a wide range of high-rs values and layer separations. The out-of-phase spectrum exhibits
an exchange-correlation induced long-wavelength energy gap in contrast to earlier predictions of acoustic
dispersion softened by exchange and correlations. The energy gap is similar to what has been previously
predicted for classical charged-particle bilayers and subsequently confirmed by recent molecular dynamics
computer simulations.
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I. INTRODUCTION

Over the past two decades, interest in strongly coupled
multilayer plasmas has been stimulated by a confluence of
experimental and theoretical activities in the areas of
strongly coupled plasma physics and condensed matter phys-
ics. Foremost in the area of strongly coupled plasma physics
are the pioneering experiments of Gilbertet al. where laser-
cooled classical ions in a cryogenic trap spontaneously orga-
nize themselves into layered one-component plasma struc-
tures in highly correlated liquid and solid phasesf1g fsee
Refs. f2,3g for related molecular dynamicssMDd and theo-
retical studiesg. In the area of condensed matter plasmas,
there has been considerable interest in the fabrication of
high-rs multiple quantum well structures of parallel charged-
particle layersf4g. So far, advances in modern semiconductor
nanotechnology have made it possible to routinely fabricate
high-mobility single two-dimensionals2Dd layers in a
strongly correlated Coulomb liquid phase at temperatures
well below and comparable with the Fermi temperature. Ex-
perimental studies pursued in this domain includesid recent

measurements of the spin susceptibility of a 2D electron sys-
tem over a wide range ofrs valuesf5g, sii d measurements of
the compressibility of a 2D hole liquid as it crosses the
metal-insulator transition boundaryf6g, and siii d recent in-
elastic light-scattering-based measurements of plasmon dis-
persion in high-quality low-density 2D electron liquidsf7g.
One would expect that similar high-rs experimental tech-
niques will become available also to bilayers and double
quantum wells in the near future.

This paper addresses the problem of longitudinal collec-
tive mode dispersion in the strongly coupled zero-
temperature electronic bilayer liquid. The symmetric bilayer
is modeled as two equal-densitysn1=n2=n=N/Ad monolay-
ers of mobile electronssor holesd, each layer immersed in its
own two-dimensional uniform neutralizing background of
opposite charge. The 2N charges occupy the large but
bounded areaA in the planesz=0 andz=d of a Cartesian
coordinate system,d being the interlayer spacing. The inter-
action potentials for the symmetric charged-particle bilayer
are

f11srd = f22srd = e2/s«srd, f12srd = e2/s«s
Îr2 + d2d,

f11sqd = f22sqd = 2pe2/s«sqd,

f12sqd = f2pe2/s«sqdgexps− qdd, s1d

r andq being the in-layer separation distance and wave num-
ber, respectively. The parameterrs=a/aB is the customary
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measure of the in-layer coupling strength in the zero-
temperature quantum domain,a=1/Îpn being the 2D
Wigner-Seitz radius andaB="2«s/me2 the effective Bohr ra-
dius; «s is the dielectric constant of the substrate.

Historically, the longitudinal collective mode structure of
layered electron gases was studied first in relation to the
type-I superlattice in the hydrodynamic approximationf8g
and in the random-phase approximationsRPAd f9,10g. It was
found that the RPA longitudinal mode structure consists of an
isolated 3D bulk plasmon and a band of acoustic modes
f8,9g. The RPA mode structure of the charged-particle bilayer
was studied by Das Sarma and Madhukar and by Santoro
and Giuliani f11g. The longitudinal mode structure consists
of an in-phases1d modeswhere the two layers oscillate in
unisond and an out-of-phases2d mode swhere the oscilla-
tions of the two layers exhibit a 180° phase differenced.
Within the RPA, the in-phase plasmon has the typicalv+sq
→0d,Îq corresponding to the optical mode of an isolated
2D layer of density 2n, while the out-of-phase plasmon is
acoustic,v−sq→0d,q f11g. To better facilitate comparison
with experiments on the layered electron gas in thers,1
shigh-densityd regime, Jain and Allenf10sadg subsequently
derived the RPA plasmon dispersion relations for semicon-
ductor multilayer systems consisting of afinite number of
equal-density layers. Their theoretical predictionsf10g about
the RPA dispersion of the out-of-phase acoustic plasmons are
in good agreement with measurements from Raman scatter-
ing experiments in the low-rs regimef12g.

In the strong coupling regime, the RPA is no longer ap-
plicable. In the high-temperature classical domain, two sub-
stantially different theoretical approaches have been pro-
posed: The first is the conventional 3D Singwi-Tosi-Land-
SjolandersSTLSd f13g approach adapted to the calculation of
the dynamical dielectric matrix for the type-I superlattice
f14g. The second approach invokes the quasilocalized charge
approximationsQLCAd, introduced by Kalman and Golden
f15g, which was applied to the type-I superlatticef16g and
bilayer f15sbd,17g configurations. These latter studies predict
that strong Coulomb interactions bring about substantial
modifications in the RPA description of plasmon dispersion,
most notably, the occurrence of aq→0 finite frequencysen-
ergy gapd in the out-of-phase longitudinal collective mode.
This mode, which is gapless in the RPA, is shown to exhibit
this remarkable effect once stronginterlayercorrelations are
taken into account. This prediction has recently been con-
vincingly confirmed by the molecular dynamics simulations
of classical charged-particle bilayers carried out by Donkoet
al. f18g and by Ranganathan and Johnsonf19g. On the theo-
retical side, a recent sum-rule analysisf20g of the long-
wavelength behavior of the in-phase and out-of-phase dy-
namical structure functions further suggests that the energy
gap persists over the entire classical to quantum domain all
the way down toT=0.

In the low-temperature quantumsQd domain, three some-
what related theoretical approaches have been used for the
calculation of the dielectric matrix and plasmon dispersion
primarily in strongly correlated charged-particle bilayers.
The approachfQsidg followed by Neilsonet al. f21sadg com-
pletely neglects interlayer correlations beyond the RPA under
the assumption that the mutual interaction of the layers can

be taken into account through the average RPA field. The
intralayer correlations are accounted for via a scalar static
local field Gsqd taken from the Ref.f22g quantum Monte
Carlo sQMCd pair correlation function data for the 2D elec-
tron liquid in the ground state. The approachfQsii dg followed
by Swierkowskiet al. f21sbdg, by Liu et al. f21scdg, and by
Zhangf23g allows also for interlayer correlations by using a
static local field matrix which can be generated by adaptation
of the conventional STLS-type approximation schemef13g
to the charged-particle bilayer. Predicated on the assumption
that the interlayer interactions are weak, the treatments of
Refs. f21sbd,21scdg then use the QMC 2D pair correlation
function data of Ref.f22g as an input to the explicit calcula-
tions of G11sqd andG12sqd. A somewhat more sophisticated
approachfQsiii dg followed by Tanatar and Davoudif24g is
based on a STLS-like approximation schemef25g, referred to
as the “QSTLS,” which is formulated from a quantum me-
chanical Wigner function kinetic equation formalism, and
which featuresdynamical local field correctionsG11sq ,vd
andG12sq ,vd.

The above three approaches share the following features.
sid They lack a consistent treatment of strong interlayer

correlations: while the intralayerG11sqd is obtained from
QMC simulations, the interlayerG12sqd is either taken to be
zero or calculated as a weak perturbation.

sii d Calculations of the plasmon dispersion are limited to
the rs,8 coupling domain.

siii d The STLS and QSTLS approaches fail to comply
with the third-frequency-momentskv3ld sum rule f20,26g,
which is known to play a central role in the long-wavelength
plasmon dispersion in strongly coupled isolated 2D charged-
particle layersf27,28g. In fact, they completely fail to repro-
duce in the out-of-phasekv3l sum-rule coefficient the cru-
cially important nonvanishing long-wavelengthsq→0d term.

sivd The predicted out-of-phase plasmon dispersion is al-
ways acoustic. The mode is softened by exchange-correlation
effects such that, forrs above some critical value,8
f21sad,21sbdg, or for sufficiently small layer separations
f21scd,24g, the acoustic plasmon ultimately merges with the
single-particle excitation region and is quenched by Landau
damping.

The approach presented in this paper removes the limita-
tions of the approaches cited above.sid G11sqd and G12sqd
are treated on an equal footing made possible by the avail-
ability of pair correlation function data generated by the dif-
fusion Monte CarlosDMCd studies of Rapisarda and Sena-
tore f29g. sii d The present study is carried out over a wider
range of intralayer coupling values extending up tors=30,
with emphasis placed on understanding how the longitudinal
collective mode dispersion is modified by strong interlayer
interactions well beyond the RPA.siii d The method followed
in this paper generates a dielectric matrix that almost exactly
satisfies the third-frequency-moment sum rule.sivd It dem-
onstrates that a remarkableq→0 finite frequencysenergy
gapd, predicted by Golden, Kalman, and co-workers for
strongly coupled layered charged-particle systems in the
classical domainf15–20g, also exists in the zero-temperature
quantum domain. The theoretical confirmation of the exis-
tence of the energy gap in degenerate electronic bilayer liq-
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uids is the single most important result of the present work.
The approach followed in this paper is based on the

quasilocalized charge approximation, an approximation
method that has proved to be consistently successful in the
description of collective mode dispersion in strongly coupled
classical Coulomb liquids, as borne out by comparisons with
a series of MD simulationsf15sbd,18,30–32g. The develop-
ment to be followed here parallels that of a recent companion
paperf33g by three of the authors where they extended the
QLCA dielectric response function in a way that makes it
suitable for the description of collective mode dispersion in
strongly coupled 2D Coulomb liquids in the quantum do-
main. The further extension to the quantum bilayer configu-
ration generalizes the Ref.f33g single-layer scalar formalism
to a matrix formalism.

To briefly reiterate what was stated in Ref.f33g, the
QLCA was formulated by Kalman and Golden some time
ago f15sadg for the express purpose of describing collective
mode dispersion in a variety of classical Coulomb liquid
configurationsf15–17,28,34g in the strong coupling regime.
The basis of the formal development of the QLCA is that the
dominating feature of the physical state of the plasma with
G=e2/ s«sakBTd@1 is the quasilocalization of the charges.
This physical picture suggests a microscopic equation-of-
motion model where the particles are trapped in local poten-
tial fluctuations. The particles occupy randomly locatedsbut
certainly not uncorrelatedd sites and undergo oscillations
around them. At the same time, however, the site positions
also change and a continuous rearrangement of the underly-
ing quasiequilibrium configuration takes place. Inherent in
the QLC model is the assumption that the two time scales are
well separated and that for the description of the rapidly
oscillating motion, the time averagesconverted into an en-
semble averaged of the drifting quasiequilibrium configura-
tion is sufficient.

A unique feature of the extended QLCA developed in this
paper is that it reproduces the crucially important exchange-
correlation contributions to thekv3l sum-rule coefficients.
The connection between the in-phase plasmon dispersion and
the in-phasekv3l sum-rule coefficient can be inferred from
the discussion surrounding the 2D Eqs.s2d and s3d in Ref.
f33g. However, the connection between the out-of-phase
plasmon dispersion and the out-of-phase sum-rule coefficient
is even more compelling, since it is the interlayer correla-
tional contribution to the latter that dominates in theq→0
limit, and it is precisely this contribution that emerges as the
q→0 energy gapfsee Eq.s19d belowg. It is the complete
violation of this sum rule by the other competing theories
that is responsible for the incorrectly predicted out-of-phase
acoustic dispersion in the strong interlayer coupling regime.

Crucial to the extended QLCA approach is the description
of the positions of the localized particles in terms of equilib-
rium pair correlation functions. These latter for the symmet-
ric electronic bilayer liquid have been generated by Rap-
isarda and Senatoref29sad–29scd,29sfdg over a wide range
of rs and d/a values from diffusion Monte Carlo simula-
tions. Some of these pair correlation function data have al-
ready been published along with the phase diagram
f29sad–29sdd,29sfdg. Additional results of these simulations,

essential to the development of the present analysis, are pro-
vided here. A full compilation of the details of the DMC
study is availablef29sedg.

Both the DMC simulations and the extended QLCA cal-
culations in the present work are limited to the extent that
tunneling between the two layers is ignored. Consequently,
the range of validity for the present analysis is necessarily
restricted to layer separationsd.aB. Note, however, that for
rs.1, this condition still substantially allows ford,a, and,
consequently,strong interlayer interactions.

To summarize, the primary goal of this paper is to con-
struct and analyze the dielectric matrix«ABsq ,vd, for a zero-
temperature symmetric bilayer in the strong coupling regime.
From this dielectric matrix, we derive the dispersion relation
for the longitudinal in-phase and out-of-phase collective
modes. The energy gap mentioned above emerges as an in-
trinsic feature of the out-of-phase mode.

The organization of the paper is as follows. In Sec. II, we
develop the extended QLCA for bilayer systems and we cal-
culate «ABsq ,vd and its diagonalized form with elements
«±sq ,vd. The dielectric matrix contains intralayer exchange-
correlation and interlayer correlation contributions beyond
the RPA that are ultimately expressed in terms of the pair
correlation functions generated from the DMC computer
simulationsf29g cited above. In Sec. II, we also analyze the
behavior of the«±sq,vd first as functions ofq in the static
sv=0d limit and, then in the dynamicalsvÞ0d domain, as
functions ofv for fixed values ofq. In Sec. III, we analyze
the plasmon dispersion relations from the zeros of«±sq ,vd.
Conclusions are drawn in Sec. IV.

II. DIELECTRIC MATRIX

In this section, we formulate the longitudinal dielectric
response matrix for strongly coupled charged-particle bilayer
liquids at zero temperature. Paralleling the Ref.f33g devel-
opment, the starting point for the present derivation is the
classicalscld dielectric matrix that results from the QLCA
f15sbd,15scdg:

u«ABsq,vducl = dAB − o
C

fACsqd
nq2

mv2

3FI −
nq2

mv2DsqdG
CB

−1

sA,B,C = 1,2d.

s2d

I is thes232d identity matrix andsnq2/mdDsqd is the purely
correlational part of the dynamical matrix. Equations2d is
derived from the microscopic equation of motion for the col-

lective coordinatesjW A
qstd, defined through the Fourier repre-

sentationjW A
i std=s1/ÎNmdoqjW A

qstdexpsiq ·xA
i d relating jW A

q to

the displacementjW A
i of particle i in layer A. The QLCA ma-

trix elements are expressed in terms of the 11,12 static
structure functions, or equivalently, in terms of the 11,12
pair correlation functions hABsrd=s1/NdoqfSABsqd
−dABgexpsiq ·r d. One obtainsf15sbd,17g
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D11sqd =
1

N
o
q8

sq ·q8d2

q4 f11sq8dfS11sq − q8d − S11sq8dg

−
1

N
o
q8

sq ·q8d2

q4 f12sq8dS12sq8d

=
pe2

q2 E
0

`

dr
1

r2h11srdF1 − 4J0sqrd + 6
J1sqrd

qr
G

s3ad

+
pe2

q2 E
0

`

dr
rh12srd

sr2 + d2d3/2F1 −
3d2

r2 + d2G , s3bd

D12sqd =
1

N
o
q8

sq ·q8d2

q4 f12sq8dS12sq − q8d

= −
pe2

q2 E
0

`

dr
rh12srd

sr2 + d2d3/2F1 −
3d2

r2 + d2G
+

pe2

q2 E
0

`

dr
rh12srd

sr2 + d2d3/2F1 − 4J0sqrd + 6
J1sqrd

qr
G

s4ad

−
3pe2d2

q2 E
0

`

dr
rh12srd

sr2 + d2d5/2F1 − 2J0sqrd + 2
J1sqrd

qr
G .

s4bd

In the long-wavelengthsq→0d limit, Eqs. s3ad ands4ad sim-
plify to

D11sq → 0d =
5

16

1

N
o
q8

f11sq8dfS11sq8d − 1g

−
1

2Nq2o
q8

q82f12sq8dS12sq8d, s5d

D12sq → 0d =
1

2Nq2o
q8

q82f12sq8dS12sq8d

+
5

16

1

N
o
q8

f12sq8dS12sq8d

3F1 −
11

5
q8d +

3

5
sq8dd2G . s6d

The derivation of Eq.s2d is predicated on the assumption that
random motions are negligible: this is a reasonable assump-
tion for a low-temperature classical charged-particle bilayer
in the strong coupling regime where the potential energy
dominates over the thermal energy that is responsible for the
random motion, so that at sufficiently low temperatures one
can neglect the random motion of the particles. In contrast,
for a degenerate system, the low temperature does not ensure
that the random motion of the particles is negligible, and one
should therefore take account of the ground-state kinetic en-

ergy of the particles. In order to accomplish this, we observe
that in Eq.s2d the nq2/ smv2d factor is readily identified as
the Vlasov density response function corresponding to the
momentum distribution functionfspd,ndspd. One may
therefore assume that for a Fermi distribution of momenta,
the appropriate replacement fornq2/ smv2d is the Lindhard
matrix xAB

s0dsq ,vd=x0sq ,vddAB, where

x0sq,vd =
2

"

1

Ao
p

f„up + s1/2dqu… − f„up − s1/2dqu…
v + s"/mdp ·q + ih

. s7d

The resulting dielectric matrix takes the form

«ABsq,vd = dAB − o
C

fACsqdx0sq,vdfI − x0sq,vdDsqdgCB
−1

s8d

sA,B,C=1,2d. We note that the dielectric matrix and all
other physical quantities can be diagonalized by rotating into
the space spanned by the in-phases1d and out-of-phases2d
directions: for the symmetric bilayer, the resulting matrix
elements are «±sq ,vd=«11sq ,vd±«12sq ,vd, f±sqd
=f11sqd±f12sqd, etc. The diagonalization of Eq.s8d there-
fore results in

«±sq,vd = 1 −
f±sqdx0sq,vd

1 − x0sq,vdfD11sqd ± D12sqdg
. s9d

The Dsqd matrix elements in Eqs.s8d and s9d are formally
identical to D11sqd and D12sqd in Eqs. s3d and s4d, but it
should be borne in mind that theSABsqd andhABsrd are now
the static structure functions and pair correlation functions
appropriate for the zero-temperature symmetric electron bi-
layer liquid and, as such, these latter quantities embody all
the exchange-correlation effects. Accordingly,D11sqd and
D12sqd are to be calculated from Eqs.s3d and s4d with the
input of the diffusion Monte Carlo pair correlation function
data presented in this work and in Ref.f29g.

A central role is played by the in-phase and out-of-phase
third-frequency-moment sum rules which, for the bilayer
system under discussion, take the formf20,26g

1

p
E

−`

`

dvv3 Im
1

«±sq,vd

= − f±sqd
nq2

m
Fnq2

m
f±sqd + 3

kEkinl
m

q2

+
nq2

m
fD11sqd ± D12sqdg + S"q2

2m
D2G; s10d

D11sqd andD12sqd were defined below Eq.s9d; kEkinl is the
expectation value of the kinetic energy per particle for the
interacting system consisting of a noninteracting parts0d and
a correlationalscd part. It is required that the«±sq ,vd satisfy
these sum rules. In fact, we note that the high-frequency
expansion of Eq.s9d provides the average energy per particle
for the noninteracting system,kEkinl0, instead ofkEkinl. The
consequences of this discrepancy, as they pertain to the in-
phaseq→0 plasmon dispersion, have been analyzed in the
companion studyf33g of the 2D isolated layer. The findings
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and quantitative estimates therein certainly should be appli-
cable to the present study ford/a sufficiently large, say,
d/a.1.5 where interlayer correlations are weak
f18sbd,29sadg: to reiterate what was stated in Ref.f33g, since
the missing correlational part of the kinetic energy would act
to increase the kinetic energy, Eq.s9d should lead to anover-
estimateof the softening of the in-phase plasmon dispersion
brought about by the effect of exchange and correlations re-
siding in theD11 andD12 matrix elements. The magnitude of
the overestimate decreases with increasingrs and in thers
→` limit, where the total kinetic energy ceases to contribute
to the small-q dispersion, one should recover the correct in-
phase oscillation frequency characteristic of the isolated 2D
Wigner crystalf35g for d/a values well above 1.5. Ford/a
,1.5, the situation is not expected to be qualitatively differ-
ent, although the importance of the correlational part of the
kinetic energy will depend on the layer separation, since the
latter affects the extent to which the particles are localized.

In the case of the out-of-phase plasmon dispersion, the
missing correlational part of the kinetic energy is not ex-
pected to be an issue, since ford/a,1.0 and in the small-q
domain of interest, theOsq2a2d kinetic energy and RPA
acoustic plasmon oscillation terms in the sum-rule coefficient
are overwhelmed by the prominentOs1d term proportional to
fD11sqd−D12sqdg that gives rise to theq→0 energy gapfsee
Eqs.s19d ands21d belowg. This observation leads us to con-
clude that, in the long-wavelength domain, agreement be-
tween the exact sum-rule coefficients10d and its third-
frequency-moment counterpart generated froms9d is very
good indeed.

The matrix elementsD11sqd and D12sqd are to be calcu-
lated from Eqs.s3bd ands4bd with the input of the DMC pair
distribution function data mostly for the normal fluid phase
f29sad,29scd,29sfdg and, in one particular casesrs=20,d/a
=1.5d, for the fully spin-polarized fluid phasessee discussion
belowd. Figures 1–3 show the pair distribution functions
gABsrd=1+hABsrd as functions ofr /a for 10ø rsø30, and
0.2ød/aø1.5. Note that ford/a=0.2,g12srd exhibits oscil-
lations that are more pronounced than those exhibited by
g11srd f29sad,29sbdg. As the layer spacing increases, the os-
cillations ing11srd intensify at the expense of those ing12srd.
At layer separationsd/aù1.5, g12srd<1, indicative of iso-
lated 2D layer behavior. For a comparison with the corre-
sponding pair correlation function data for the classical bi-
layer, see Ref.f36g.

The various relevant phases of the symmetric electron bi-
layer have been mapped in Refs.f29sad,29sddg. At rs=10; the
bilayer is in the normalshomogeneousd fluid phase for all
values ofd/a. At rs=20, the normalshomogeneousd fluid is
still the stable phase ford/a,0.4; the bilayer then crystal-
lizes for 0.4,d/a,1; thereafter, ford/a.1, the crystal
subsequently melts into a fluid phase. This region in the
phase diagram is in close proximity to the boundary separat-
ing the fully spin-polarized fluid phase from the unpolarized
fluid phase. Along this boundary, the DMC-generated
ground-state energies of these latter two phases are within
combined overlapping error bars, precluding the possibility
of specifying one or the other phase with any degree of cer-
tainty. Forrs=30 andd/aø0.2, the bilayer is in the normal

shomogeneousd fluid phase or in its immediate vicinity
f29sad,29sbd,29sddg.

Consequently, atrs=10 and 30, the spin-unpolarized
gABsrd data displayed in Figs. 1 and 3 are the appropriate
inputs into the Eqs.s3bd ands4bd formulas for the computa-
tion of D11sqd andD12sqd. For rs=20 andd/a=0.2, the ap-
propriate inputs again are the spin-unpolarizedgABsrd data
displayed in Fig. 2. At thisrs value, ford/a=1.0 and 1.5, the
gABsrd data for the fully spin-polarized and normal fluids are
very nearly the same; thus, it makes little difference which of
these data are selected as inputs into Eqs.s3bd and s4bd: we
choose as inputs the spin-unpolarizedgABsrd data for d/a
=1.0 and the fully spin-polarizedgABsrd data ford/a=1.5.
These data are also displayed in Fig. 2.

To facilitate the collective mode analysis that follows be-
low in Sec. III, we introduce the more convenient dimension-
less quantityGABsqd=−f«sq/ s2pe2dgDABsqd, which formally
is a static local field correction. One should bear in mind,
however, that the physical justification for this term is differ-
ent from that of the conventional static mean field.G11sqd
andG12sqd are shown in Fig. 4 as functions of dimensionless
in-plane wave numberq̄=q/qF sqF=Î2pnd for different rs

and d/a values. The small-q behavior of G11 and G12 is
given by Eqs.s5d ands6d which stipulate that to lowest order

FIG. 1. Diffusion Monte Carlo intralayers11d and interlayer
s12d pair distribution functionsgij srd for a symmetric electronic
bilayer in the normal fluid phase atrs=10 and d/a
=0.2,0.5,1.0,1.5;r /a is the dimensionless in-layer separation dis-
tance,a=1/Îpn being the 2D Wigner-Seitz radius.sad g11srd: the
curve with the highest peak corresponds tod/a=1.5; sbd g12srd: the
curve with the highest peak corresponds tod/a=0.2.
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in q, G11sq→0d=−Gsrs,d/ad /q and G12sq→0d
=Gsrs,d/ad /q, where

Gsrs,d/ad =
1

2
E

0

`

dr
rg12srd

sr2 + d2d3/2F1 −
3d2

r2 + d2G . 0. s11d

At large q, one can readily show from Eqs.s3d and s4d that

G11sq → `d = f1 − g11sr = 0dg + Os1/qd, s12d

G12sq → `d = f1 − g12sr = 0dgexps− qdd. s13d

In the d→` limit, one recovers from Eqs.s12d ands13d the
2D Kimball identity f37g

FIG. 2. Diffusion Monte Carlo intralayers11d and interlayer
s12d pair distribution functions for a symmetric electron bilayer at
rs=20 andd/a=0.2 snormal fluidd, 1.0 snormal fluidd, 1.5 sfully
spin-polarized fluidd. sad g11srd: the curve with the highest peak
corresponds tod/a=1.5; sbd g12srd: the curve with the highest peak
corresponds tod/a=0.2.

FIG. 3. Diffusion Monte Carlo intralayers11d and interlayer
s12d pair distribution functions for a symmetric electron bilayer in
the normal fluid phase atrs=30 andd/a=0.2. The dashed and full
curves labelg12srd andg11srd, respectively.

FIG. 4. Intralayers11, solid curvesd and interlayers12, dashed
curvesd dimensionless local field factors for the symmetric elec-
tronic bilayer as functions of dimensionless wave numberq̄=q/qF;
qF=Î2pn. sad sNormal fluidd rs=10 andd/a=0.2,0.5,1.0,1.5; the
lowest-lying G11sq̄d curve corresponds tod/a=0.2; the highest-
lying G12sq̄d curve corresponds tod/a=0.2. sbd rs=20 andd/a
=0.2 snormal fluidd, 1.0snormal fluidd, and 1.5sfully spin-polarized
fluidd; the lowest-lyingG11sq̄d curve corresponds tod/a=0.2; the
highest-lyingG12sq̄d curve corresponds tod/a=0.2. scd sNormal
fluidd rs=30 andd/a=0.2.
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lim
q→`

f1 − G11sqdg = g11sr = 0d s14d

valid for any static local field correctionG11sqd that one may
choose to approximate the exactG11sq ,vd for all values of
v. For further clarification, see Ref.f33g.

Figure 5 shows how the extended QLCA static in-phase
and out-of-phase dielectric functions«±sq̄,v̄=0d vary with
dimensionless wave numberq̄=q/qF for rs=20, d/a=0.2.
Figures 6–8 show how their dynamical counterparts
Re«±sq̄,v̄d vary with dimensionless frequencyv̄="v /«F

s«F=pn"2/md over a range of fixedq̄ values. We can note a
number of points of interest in the behavior of Re«±sq ,v̄d.

Consider first Re«+sq ,vd.
sid The in-phase isothermal compressibility is negative for

sufficiently high coupling in the classical domainf36g and it
must be negative as well in the quantum domainf20,38g. The
compressibility sum rulef20g dictates that«+sq̄,0d should
also develop a first-order pole atq̄=0:

«+sq̄ → 0,0d = K+
2Î2rs

q̄
+ Os1d; s15d

K+ is expressible in terms of the physical intralayer and in-
terlayer compressibilitiesf20g. Its value in the present ap-
proximation is calculated from Eqs.s5d, s6d, ands9d as

K+
−1 = 1 +

5rs

8

E11 + E12

e2/a
−

5

16

m

p"2o
q8

f12sq8dh12sq8d

3F11

5
q8d −

3

5
sq8dd2G , s16d

where E11=sn/2dedr f11srdh11srd and E12

=sn/2dedr f12srdh12srd are the intralayer and interlayer po-
tential energies per particle, respectively. Thus,K+,0 in the
strong coupling regime of interest here.

FIG. 5. In-phases1d and out-of-phases2d static dielectric func-
tions for the normal fluid phase atrs=20 and d/a=0.2. sad
«+sq̄,v=0d develops a first-order pole atq̄0

+=3.978; sbd «−sq̄,v
=0d develops first-order poles atq̄00

− =1.885 andq̄0
−=2.795.

FIG. 6. Re«+sq̄,v̄d as a function of dimensionless frequency
v̄=vm/ spn"d for q̄=1.0,3.0,4.2; normal fluid phase atrs=20 and
d/a=0.2.
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sii d On the interval 0ø q̄, q̄0
+, whereq̄0

+, is the location of
a second first-order pole«+sq̄,v̄=0d,0 fFig. 5sadg. On this
interval, the«+sq̄,v̄=0d curve is an inverted U with maxi-
mum lying below theq̄ axis. For q̄. q̄0

+, «+sq̄,v̄=0d de-
scends from positive infinity and approaches unity asq̄→`
fFig. 5sadg. We find thatq̄0

+=3.98 forrs=20 andd/a=0.2; q̄0
+

ranges from 3.0 to 4.5 asrs increases from 10 to 30, its
dependence on thed/a ratio being very weak. A similar
qualitative behavior has been shown to prevail in the classi-
cal domain both for 2D and bilayer systemsf36sad,36scdg.

We note that the«+sq̄,v̄=0d curve never penetrates the “for-
bidden” domain 0ø«+sq̄,v̄=0d,1 f39g.

siii d The first-order pole that develops atq̄=q0
+ survives as

well for v̄Þ0 and in the intervalq̄0
+ø q̄ø q̄*

+, the pole moves
along the locusv̄=v̄*

+sq̄d; q̄*
+ s<5.5 for rs=20,d/a=0.2d is

the value ofq̄ wherev̄*
+sq̄d reaches the right boundary of the

pair excitation continuum. More will be said below aboutq̄*
+.

sivd On the interval 0ø q̄,q0
+, Re«+sq̄,v̄d as a function

of v̄ begins inside the RPA pair excitation continuum with a
finite negative value atv̄=0 and increases monotonically

FIG. 7. Re«−sq̄,v̄d as a function of dimensionless frequency
v̄=vm/ spn"d for q̄=0.5,1.0,2.5; normal fluid phase atrs=20 and
d/a=0.2.

FIG. 8. Re«−sq̄,v̄d as a function of dimensionless frequency
v̄=vm/ spn"d for q̄=3.0,4.0,4.1; normal fluid phase atrs=20 and
d/a=0.2.
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crossing thev̄ axis. For q̄ below some critical valueq̄c
+

, q̄0
+, this crossing takes place outside the pair excitation

continuumfFigs. 6sad and 6sbdg at the in-phase plasmon ex-
citation frequencyv̄+sq̄d, and thereafter approaches unity as
v̄→` fq̄c

+,3 for rs=20, d/a=0.2; see Fig. 6sbdg.
svd On the intervalq0

+ø q̄øq*
+, Re«+sq̄,v̄d starts with a

positive value atv̄=0 and approaches infinity asv̄ ap-
proachesv̄*

+sq̄d, the location of the polefFig. 6scdg. For v̄
.v̄*

+sq̄d, Re«+sq̄,v̄d emerges from negative infinity and
crosses thev̄ axis. This crossing occurs always inside the
pair excitation continuum and, as such, cannot represent a
collective excitationfFig. 6scdg.

svid In the intervalq̄. q̄*
+, Re«+sq̄,v̄d is always positive,

develops a finite positive peak, and then approaches unity as
v̄→`.

Turning now to Re«−sq ,vd, we find that its morphology
is more intricate.

sid For sufficiently high coupling, the compressibility sum
rule f20g requires that«−sq̄→0,v̄=0d assume a finite nega-
tive value for the classical bilayerf36sad,36scdg. Again, it
must be negative as well for the quantum bilayerf20sadg.
However, according to the extended QLCA model,«−sq̄
→0,v̄=0d=1+dq̄2/ sGa2d.1 fFig. 5sbdg. Indeed, this same
defect also shows up in the QLCA treatment of the classical
bilayer f17g.

sii d On the interval 0ø q̄ø q̄00
− , «−sq̄,v̄=0d increases

from «−sq̄=0,v̄=0d=1 and develops a first-order pole atq̄
= q̄00

− f=1.885 for rs=20, d/a=0.2; see Fig. 5sbdg. For the
reason stated insid above, this pole must be regarded as
unphysical.

siii d On the intervalq̄00
− , q̄, q̄0

−, «−sq̄,v̄=0d behaves in a
way similar to«+sq̄,v̄=0d on the interval 0, q̄, q̄0

+: it de-
velops a second first-order pole atq̄= q̄0

− f=2.795 forrs=20,
d/a=0.2; see Fig. 5sbdg and takes the form of an inverted U
with maximum well below theq̄ axis. Thereafter forq̄. q̄0

−,
«−sq̄,v̄=0d descends from positive infinity and approaches
unity asq̄→`. Again, a similar qualitative behavior has been
reported for the classical bilayerf36sad,36scdg.

sivd The positive value of«−sq̄,v=0d leads to the forma-
tion of a first-order polefFigs. 7sad and 7sbdg at a finite v̄
=v̄**

− sq̄d on the interval 0ø q̄ø q̄**
− , where q̄**

− s,1.57 for
rs=20,d/a=0.2d is theq̄ value wherev̄**

− sq̄d reaches the left
boundary of the pair excitation continuum. The pole moves
along the locus ofv̄**

− sq̄d. Again, this pole is spurious.
svd The pole that develops atq̄00

− is within the RPA pair
excitation continuum and, in contrast to the behavior ofq̄0

+

and q̄0
− sintroduced belowd, it does not survive forv̄.0; it

rather generates a complex sequence of maxima and minima
in Re«−sq̄,v̄d in its immediate vicinity. The appearance of
the pole represented byv̄**

− sq̄d above the left boundary of the
continuum is, however, intrinsically linked to the existence
of the pole atq̄00

− and the former can be regarded as the
continuation of the latter outside the continuum.

svid The first-order pole that develops atq̄=q0
− survives as

well for v̄Þ0, and in the intervalq̄0
−, q̄, q̄*

−, it moves
along the locusv̄=v̄*

−sq̄d; q̄*
− s<4 for rs=20,d/a=0.2d is the

value ofq̄ wherev̄*
−sq̄d reaches the right boundary of the pair

excitation continuum. More will be said below aboutq̄*
−

along with q̄*
+.

svii d On the interval 0ø q̄, q̄0
−, the low-frequency behav-

ior of Re«−sq̄,v̄d is complicated due to the presence of the
poles alongv̄**

− sq̄d and in the vicinity ofq̄00
− . Since both of

these poles are spurious, we do not dwell on the details of
this behavior. Within this interval, forq̄ below some critical
valueq̄c

− s=2.44 forrs=20,d/a=0.2d, Re«−sq̄,v̄d crosses the
v̄ axis from below at the out-of-phase plasmon frequency
v̄−sq̄d, and thereafter approaches unity asv̄→` fFigs. 7sad
and 7sbdg.

sviii d On the intervalq0
−ø q̄øq*

−, Re«−sq̄,v̄d starts with a
positive value atv̄=0 and approaches infinity asv̄→ v̄*

−sq̄d,
the location of the polefFigs. 8sad and 8sbdg. For v̄.v̄*

−sq̄d,
Re«−sq̄,v̄d emerges from negative infinity and crosses thev̄
axis. This crossing occurs always inside the pair excitation
continuum and, as such, cannot represent a collective excita-
tion fFigs. 8sad and 8sbdg.

sixd On the intervalq̄. q̄*
−, Re«−sq̄,v̄d is always positive,

develops a finite positive peak, and then approaches unity as
v̄→` fFig. 8scdg.

As stated above, theq̄0
± poles survive forvÞ0 in the

region below and including the right boundary of the RPA
pair excitation continuum where they move alongv̄*

±sq̄d loci.
Elaborating on this, we analyze«±sq̄,v̄d in that region,
wheref40,41g

x0sq,vd = −
m

p"2H1 −
1

2q̄2fÎsv̄ − q̄2d2 − 4q̄2

+ Îsv̄ + q̄2d2 − 4q̄2gJ . s17d

From Eq.s17d, we observe thatx0sq̄ ,v̄=−2q̄ + q̄2d is always
negative on the right boundary of the pair continuum. Then
according to Eq.s9d, the in-phase and out-of-phase dielectric
functions on the right boundary each develop a discontinuity
at a certainq̄ value, sayq̄*

±= q̄*
±srs,d/ad, where the denomi-

nators 1+f2Dsq̄dx0sq̄ ,−2q̄ + q̄2dfG11sq̄d±G12sq̄dg vanish.
The continuation of these discontinuities as first-order poles
into the 0øv̄,−2q̄ + q̄2, q̄ ù2 domain is a consequence of
the fact that the expressions17d for x0sq̄ ,v̄d remains nega-
tive throughout that entire domain. For a given pair of
srs,d/ad values, the lociv̄*

±sq̄d, q̄0
± ø q̄ø q̄*

±, of all such poles
from theq̄ axis up to the right boundary then form the fami-
lies of in-phase and out-of-phase curves shown in Figs. 9 and
10. Evidently, the Fourier components of the in-phase and
out-of-phase total charge density perturbations are perfectly
screened at theseq̄,v̄ values. Our analysis indicates that the
pole of «+sq̄,v̄d persists forrs values all the way down to
Î2/fG11s2d+G12s2dg<2.02 for arbitrary values ofd/a. This
value compares favorably with the Hartree-Fockrs=p /Î2
=2.22 predictionf6,38g, and with the QMCrs,2.03 value
f22g and experimentally observed valuers=1.71f38g for the
onset of negative compressibility in 2D degenerate electron
liquids. The same criticalrs<2.02 value results as well for
the out-of-phase pole as well ford/aù1. For sufficiently
small layer separations, however, the existence of the out-of-
phase pole can become stronglyd/a dependent. For ex-
ample, the out-of-phase pole does not develop atrs=10 and
d/a=0.2 fno rs=10 curve displayed in Fig. 9sbdg, whereas it
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does develop atd/a=0.5 fsee Fig. 9sadg indicating that there
is some value between 0.2 and 0.5, below which«−sq̄,v̄d
ceases to develop any pole behavior.

III. PLASMON DISPERSION

We turn now to the calculation of plasmon dispersion in
the strongly coupled symmetric charged-particle bilayer liq-
uid. We use the formulations of Sternf40g and Isiharaf41g
for the zero-temperaturex0sq ,vd in the extended QLCA for-
mulass9d for «±sq ,vd. The mode frequencies above and on
the left boundary of the pair continuum are then calculated
by equating«±sq ,vd to zero withx0sq ,vd given by f40,41g

x0sq,vd = −
m

p"2H1 +
1

2q̄2fÎsv̄ − q̄2d2 − 4q̄2

− Îsv̄ + q̄2d2 − 4q̄2gJ . s18d

In the q̄→0 limit, v+s0d=0 and

v−sq̄ → 0d = v0
Î2aG; vGAP, s19d

with G=Gsrs,d/ad given by Eq.s11d; v0=Î2pne2/ smad is a
nominal 2D plasma frequency. The correlation-induced en-

ergy gaps19d, displayed in Fig. 11 as a function ofrs and
d/a, is a unique feature both of the QLCA approach of Refs.
f15–17g and of the extended QLCA approach of the present
paper. As we have stated above, its existence in classical
bilayers has been confirmed by recent MD simulations
f18,19g. Since the physical conditions leading to the finite-
frequency gap are similar in the classical and quantum do-
mains, there is little doubt that the results of the classical
simulations are relevant to the present work as well. In ad-
dition, the sum-rule analysis of Ref.f20g provides a further
theoretical basis for expecting similar such behavior in clas-
sical and quantum bilayers.

At long wavelengths, the in-phase and out-of-phase plas-
mon frequenciesf20g

v+
2sq → 0d = 2v0

2qaF1 −
1

2
qd+

1

2
qaS3

4
rs«kin

0 + g+DG ,

s20d

v−
2sq → 0d = vGAP

2 + v0
2q2adF1 +

a

d
S3

4
rs«kin

0 + g−DG ,

s21d

result from Eqs.s5d, s6d, s9d, ands18d; «kin
0 =1/rs

2 is the non-
interacting part of the kinetic energy per particle in Rydberg

FIG. 9. In the region 0øv̄ø−2q̄+ q̄2,q̄ù2: Loci of first-order
poles of the dielectric response functions«±sq̄,v̄d calculated from
Eqs. s9d, s3bd, s4bd, and s17d for the normal fluid phase atd/a
=0.2; sad in-phase curves forrs=10,20,30;sbd out-of-phase curves
for rs=20,30.

FIG. 10. In the region 0øv̄ø−2q̄+ q̄2,q̄ù2: Loci of first-order
poles of the dielectric response functions«±sq̄,v̄d, calculated from
Eqs.s9d, s3bd, s4bd, ands17d for the normal fluid phase;sad in-phase
and out-of-phase curves ford/a=0.5, rs=10; sbd in-phase and out-
of-phase curves ford/a=1.0, rs=10,20.
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units. The last right-hand-side members of Eqs.s20d ands21d
can be expressed in terms of the static structure functions:

g± =
5a

32
E

0

`

dq8fS11sq8d − 1g ±
5a

32
E

0

`

dq8F1 −
11

5
q8d

+
3

5
sq8dd2GS12sq8dexps− q8dd. s22d

Or, alternatively, in terms of potential energies:

g± =
5

16
FE11 ± E12

se2/ad G 7
7

8

d2

a2

vGAP
2

v0
2 7

33

16

d4

a
E

0

`

dr
rh12srd

sr2 + d2d5/2;

s23d

E11=sn/2dedr f11srdh11srd is the intralayer potential energy
per particle andE12=sn/2dedr f12srdh12srd is the interlayer
potential energy per particle. Our calculations indicate that
the g± plasmon dispersion coefficients are negative so that
they always act to soften the in-phase and out-of-phase plas-
mon dispersion curves.

The dielectric matrix elementss9d do not take account of
collisional smultipair excitationsd damping, leaving Landau
damping as the sole mechanism responsible for the decay of
collective excitations in the present study. At zero tempera-
ture, the Landau damping is confined to the RPA pair exci-
tation continuum region of theq̄,v̄ plane. Forv̄ù0, the
equations for the left and right boundaries of the continuum
region are given byv̄=2q̄+ q̄2 andv̄=−2q̄+ q̄2, respectively.

The straightforward calculation of the plasmon oscillation
frequencies in the regionv̄ù2q̄+ q̄2, q̄ù0, is then carried
out by substituting the Lindhard density response function
s18d into Eq. s9d and equating«±sq ,vd to zero. Using the
more convenient dimensionless frequency notationv̄±sq̄d
=mv±sq̄d / spn"d, we obtain

v̄±sq̄d = A±q̄Î q̄2

sA± − 1d2 +
4

s2A± − 1d
, s24d

A± = 1 +
Î2rs

q̄
hf1 ± exps− Î2q̄d̄dg − fG11sq̄d ± G12sq̄dgj.

s25d

The analytical formulass24d provide the plasmon dispersion
curves up to the point where they make first contact with the
left boundary of the pair continuum atq̄= q̄c

±. The in-phase
and out-of-phase dispersion curves and their RPA counter-
parts are displayed in Figs. 12–15 forrs=10,20,30 andd/a
values ranging from 0.2 to 1.5.

Figures 12 and 13 show that the in-phase plasmon mode
is not qualitatively different from the similar mode of the
isolated 2D layerf33g. In particular, forq→0, we see from
Eq. s20d that the in-phase mode exhibits the typicalv,Îq
dispersion which is always softened by theg+ dispersion
coefficient portraying interlayer correlations and intralayer
exchange and correlations.

Figures 14 and 15 show how the energy gap can dramati-
cally modify the acoustic dispersion of the out-of-phase plas-
mon. With increasing layer spacing and consequently de-
creasing interlayer correlations, the gap frequencyvgap
becomes less and less pronounced and all but disappears for
d/a.1.5 at which point the separated layers become practi-
cally uncorrelatedf29sad, see also Figs. 1sbd and 2sbdg; at
d/a=1.5, Fig. 15sbd shows the dispersion of the out-of-phase
plasmon to be very nearly acoustic. This is precisely what
was predicted by Kalmanet al. f17g for the classical bilayer
and subsequently confirmed by the MD simulations of
Donko et al. f18g. The effect of the single-pair excitations
can be assessed from Eq.s20d and from Figs. 14 and 15
showing the RPA pair excitation continuum: as long as the
layer separation is not too largesd/aø1d, the out-of-phase
gapped mode lies well above the continuum and is therefore
entirely immune to Landau damping. This is in marked con-
trast to the findings of Neilsonet al. f21g and Tanatar and
Davoudi f24g: their approaches predict that the out-of-phase
plasmon is acoustic and is softened by exchange and corre-
lations, so that it is no longer immune to Landau damping
beyond some criticalrs value. On the other hand, this soft-
ening of the slope of the dispersion curve is a common fea-
ture of all the above theoretical approaches including the
QLCA.

We remind the reader of one noteworthy feature of the
energy gap in the quantum bilayer: While it is true thatrela-
tive to the Fermi energy of the noninteracting 2D electron
gas, the magnitude of the gapincreaseswith decreasing car-
rier density sincreasingrsd, it is, in fact, the case that the
absolutegap energydecreaseswith decreasing density ac-

FIG. 11. Energy gap values as a function of layer separationd/a
for rs=10 and 20;sad in units of the nominal 2D plasma frequency
v0=Î2pne2/ s«smad; sbd in meV energy units for GaAs/AlGaAs.
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cording to the formula"vgap=f10.79/rs
2gv̄gap smeVd ffor

GaAs/Ga1−xAl xAsg. Figure 11sbd illustrates this point. This is
in marked contrast to the classical bilayer where the absolute
gap frequencysin hertzd increaseswith increasing intralalyer
coupling parameter.

As to the region 0øv̄ø−2q̄+ q̄2, q̄ù2 on or below the
right boundary of the pair continuum, our calculations indi-
cate that the determinant of the dielectric matrix does not
possess any zeros there. Consequently, there are no collective
excitations in this region.

IV. CONCLUSIONS

In this paper, we have developed and analyzed a dielectric
matrix for strongly coupled symmetric charged-particle bi-
layers at zero temperature. This has been carried out over a
range of coupling values 10ø rsø30 not addressed in other

competing theories. Our analysis is based on an extension of
the classical quasilocalized charge approximationsQLCAd
f15g into the quantum domain. The development of the ex-
tended QLCA matrix formalism of the present work parallels
the development of the Ref.f33g scalar formalism for the
isolated 2D layer.

The extended QLCA formalism of the present work, like
its classical counterpart, requires the input of the intralayer
and interlayer pair distribution functions. In fact, the result-
ing plasmon dispersion calculations are quite sensitive to the
structure of the interlayer correlations and therefore the pre-
cise determination of the latter is essential. Pair correlation
function data, generated from diffusion Monte Carlo simula-
tions and displayed in Figs. 1–3, are used in the present
calculations.

The calculation of the dielectric matrix results in explicit
expressions for the in-phase and out-of-phase dielectric re-

FIG. 12. In-phase plasmon dispersion curves for the symmetric
electronic bilayer:sad d/a=0.2 andrs=10,20,30;sbd d/a=0.5 and
rs=10. The full curves are calculated from Eqs.s9d and s18d for
equivalently, from Eqs.s24d ands25dg, s3bd ands4bd with the input
of the diffusion Monte Carlo pair distribution function datasshown
in Figs. 1–3d for the normal fluid phase. The dashed RPA curves are
calculated from Eq.s9d with D11sqd andD12sqd set equal to zero; in
sad, the highestrs value corresponds to the highest-lying RPA curve.
The hatched region is the RPA pair continuum;q̄=q/qF, v̄
=vm/ spn"d.

FIG. 13. In-phase plasmon dispersion curves for the symmetric
electronic bilayer:sad d/a=1.0 andrs=10 snormal fluidd, 20 snor-
mal fluidd; sbd d/a=1.5 andrs=10 snormal fluidd, 20 sfully spin-
polarized fluidd. The full curves are calculated from Eqs.s9d and
s18d for equivalently, from Eqs.s24d and s25dg, s3bd and s4bd with
the input of the diffusion Monte Carlo pair distribution function
data sshown in Figs. 1–3d. The dashed RPA curves are calculated
from Eq. s9d with D11sqd and D12sqd set equal to zero; insad and
sbd, the highestrs value corresponds to the highest-lying RPA curve.
The hatched region is the RPA pair continuum;q̄=q/qF, v̄
=vm/ spn"d.
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sponse functions«+sq ,vd and«−sq ,vd, respectively, leading
to a description of the two longitudinal collective modes.

The Eq.s9d in-phase dielectric response function«+sq ,vd
exactly satisfies its third-frequency-moment sum rule in the
rs→` limit, thereby guaranteeing recovery of the correct 2D
plasmon dispersion at long wavelengths in thed→` isolated
2D layer limit f33,35g. More importantly, the dominance at
long wavelengths of the energy gap contributions11d to the
Eq. s9d out-of-phase dielectric response function«−sq ,vd, all
but guarantees near-perfect satisfaction of the out-of-phase
third-frequency-moment sum rule forarbitrary rs values.
That is to say, in the small-q domain, the correlational part of
the kinetic energy that is missing from Eq.s9d is of little
consequence, since it is absolutely overwhelmed by the en-
ergy gap contribution.

The main result of the present work is the demonstration
of the existence of the long-wavelength finite-frequency en-
ergy gaps19d fFig. 11sbdg in the out-of-phase plasmon dis-
persion in the zero-temperature quantum domain. The exis-
tence of the energy gap in classical layered charged-particle

systems has already been predicted and extensively analyzed
over the past decade in a series of theoretical works
f15–18,20g. Recent molecular dynamics simulationsf18,19g
now confirm its existence in classical charged-particle bi-
layer liquids over a wide range of intralayer coupling
strengths and for interlayer spacingd,1.5a. By contrast, the
more traditional STLS and QSTLS approachesf21,24g pre-
dict that the out-of-phase plasmon is an acoustic excitation
which should ultimately merge with the pair continuum
when rs exceeds some critical coupling valuef21g. In the
present work we find that as long as the layer separation is
sufficiently smallsd,1.5ad, the presence of the energy gap
ensures that the out-of-phase plasmon is always well above
the continuum and is thus immune to Landau damping.

We recall that in the present work and in the companion
DMC simulationsf29g, tunneling between the two layers is
ruled out so that the range of validity of the extended QLCA
is necessarily restricted to layer separationsd.aB. We call
attention to the marked distinction between the energy gap
reported in the present paper and theq=0 plasmon gap in the

FIG. 14. Out-of-phase plasmon dispersion curves for the sym-
metric electronic bilayer:sad d/a=0.2 andrs=10,20,30;sbd d/a
=0.5 andrs=10; q̄=q/qF, v̄=vm/ spn"d. The full curves are cal-
culated from extended QLCA Eqs.s9d and s18d for equivalently,
from Eqs.s24d ands25dg, s3bd ands4bd with the input of the diffu-
sion Monte Carlo pair distribution function data for the normal fluid
phasesshown in Figs. 1–3d. The inset in Fig. 14sbd shows the cross-
ing of the in-phase and out-of-phase dispersion curves. The dashed
RPA acoustic curves are calculated from Eq.s9d with D11sqd and
D12sqd set equal to zero; insad, the highestrs value corresponds to
the highest-lying RPA curve.

FIG. 15. Out-of-phase plasmon dispersion curves for the sym-
metric electronic bilayer forsad d/a=1.0 rs=10 snormal fluidd, 20
snormal fluidd; sbd d/a=1.5, rs=10 snormal fluidd, 20 sfully spin-
polarized fluidd; q̄=q/qF, v̄=vm/ spn"d. The full curves are calcu-
lated from extended QLCA Eqs.s9d ands18d for equivalently, from
Eqs. s24d and s25dg, s3bd and s4bd with the input of the diffusion
Monte Carlo pair distribution function datasshown in Figs. 1–3d.
The dashed RPA acoustic curves are calculated from Eq.s9d with
D11sqd and D12sqd set equal to zero; insad and sbd, the highestrs

value corresponds to the highest-lying RPA curve.
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out-of-phase mode reported by Das Sarma and Hwangf42g:
the former is brought about solely by strong interlayer cor-
relations in the absence of interlayer quantum tunneling,
while the latter is brought about solely by interlayer tunnel-
ing in the absence of particle correlations.

As to experimental verification in the quantum domain,
the existing observations on semiconductor electronic bilay-
ers at small-rs and high-q valuesf43g can be reconciled with
the minuscule energy gap that would exist in this parameter
range. The ultimate verification of the existence of the en-
ergy gap in the zero-temperature quantum domain awaits in-

elastic light scattering experiments on high-rs multiple quan-
tum well structures.
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